Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 39
Filtrer
1.
Sci Rep ; 14(1): 12082, 2024 05 27.
Article de Anglais | MEDLINE | ID: mdl-38802422

RÉSUMÉ

Deep learning neural networks are often described as black boxes, as it is difficult to trace model outputs back to model inputs due to a lack of clarity over the internal mechanisms. This is even true for those neural networks designed to emulate mechanistic models, which simply learn a mapping between the inputs and outputs of mechanistic models, ignoring the underlying processes. Using a mechanistic model studying the pharmacological interaction between opioids and naloxone as a proof-of-concept example, we demonstrated that by reorganizing the neural networks' layers to mimic the structure of the mechanistic model, it is possible to achieve better training rates and prediction accuracy relative to the previously proposed black-box neural networks, while maintaining the interpretability of the mechanistic simulations. Our framework can be used to emulate mechanistic models in a large parameter space and offers an example on the utility of increasing the interpretability of deep learning networks.


Sujet(s)
Apprentissage profond , Naloxone , , Biologie des systèmes , Biologie des systèmes/méthodes , Naloxone/pharmacologie , Humains , Pharmacologie/méthodes , Analgésiques morphiniques/pharmacologie , Simulation numérique
2.
Front Plant Sci ; 15: 1372634, 2024.
Article de Anglais | MEDLINE | ID: mdl-38681220

RÉSUMÉ

Introduction: Soil physicochemical properties and nutrient composition play a significant role in shaping microbial communities, and facilitating soil phosphorus (P) transformation. However, studies on the mechanisms of interactions between P transformation characteristics and rhizosphere microbial diversity in P-deficient soils on longer time scales are still limited. Methods: In this study, rhizosphere soils were collected from a pure plantation of Parashorea chinensis (P. chinensis) at six stand ages in the subtropical China, and the dynamic transformation characteristics of microbial diversity and P fractions were analyzed to reveal the variation of their interactions with age. Results: Our findings revealed that the rhizosphere soils across stand ages were in a strongly acidic and P-deficient state, with pH values ranging from 3.4 to 4.6, and available P contents ranging from 2.6 to 7.9 mg·kg-1. The adsorption of P by Fe3+ and presence of high levels of steady-state organic P highly restricted the availability of P in soil. On long time scales, acid phosphatase activity and microbial biomass P were the main drivers of P activation. Moreover, pH, available P, and ammonium nitrogen were identified as key factors driving microbial community diversity. As stand age increased, most of the nutrient content indicators firstly increased and then decreased, the conversion of other forms of P to bio-available P became difficult, P availability and soil fertility began to decline. However, bacteria were still able to maintain stable species abundance and diversity. In contrast, stand age had a greater effect on the diversity of the fungal community than on the bacteria. The Shannon and Simpson indices varied by 4.81 and 0.70 for the fungi, respectively, compared to only 1.91 and 0.06 for the bacteria. Microorganisms play a dominant role in the development of their relationship with soil P. Discussion: In conclusion, rhizosphere microorganisms in P. chinensis plantations gradually adapt to the acidic, low P environment over time. This adaptation is conducive to maintaining P bioeffectiveness and alleviating P limitation.

3.
J Ethnopharmacol ; 329: 117854, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38583733

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: Mammary gland hyperplasia, a prevalent benign breast condition, often serves as a precursor to various other breast diseases. He-Zi-3 soup (HZ-3), a traditional Mongolian remedy, is utilized for treating this condition. AIM OF THE STUDY: To explore the effect and underlying mechanism of HZ-3, a Mongolian medicinal preparation, on mammary gland hyperplasia. MATERIALS AND METHODS: This study aimed to assess the impact of different doses of HZ-3 in a rat model of mammary hyperplasia. The active components within HZ-3 drug serum were identified and analyzed through network pharmacology and target prediction. To elucidate the underlying mechanism of HZ-3 in addressing mammary hyperplasia, we conducted a series of investigations on estradiol-induced mammary hyperplasia in model rates. Assessments included measurements of papilla width and height, hematoxylin and eosin staining, Masson staining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot, and immunohistochemistry. RESULTS: Our investigation revealed the identification of 21 compounds, primarily terpenoids, through serum medicinal chemistry screening. Utilizing network pharmacological analysis, we observed predominant regulation through the estrogen pathway, closely associated with key genes including esr1,esr2, ncoa1, krt 19, ctsd, ebag 9, and bcl-2. Assessments encompassing nipple height and width, histological examination, immunohistochemical analysis, and serum hormone levels via enzyme-linked immunosorbent assay demonstrated the inhibitory effect of HZ-3 on mammary hyperplasia in rat models. RT-qPCR and Western blot analyses corroborated these findings, affirming the suppression of mammary hyperplasia by HZ-3 through the activation of estrogen pathway signaling.


Sujet(s)
Hyperplasie , Glandes mammaires animales , Rat Sprague-Dawley , Animaux , Femelle , Hyperplasie/traitement médicamenteux , Glandes mammaires animales/effets des médicaments et des substances chimiques , Glandes mammaires animales/anatomopathologie , Rats , Oestrogènes/pharmacologie , Progestines/pharmacologie , Médecine traditionnelle mongole , Oestradiol/sang , Oestradiol/pharmacologie , Extraits de plantes/pharmacologie
4.
Clin Transl Sci ; 17(4): e13780, 2024 04.
Article de Anglais | MEDLINE | ID: mdl-38618722

RÉSUMÉ

Despite a rapid increase in pediatric mortality rate from prescription and illicit opioids, there is limited research on the dose-dependent impact of opioids on respiratory depression in children, the leading cause of opioid-associated death. In this article, we extend a previously developed translational model to cover pediatric populations by incorporating age-dependent pharmacokinetic, pharmacodynamic, and physiological changes compared to adults. Our model reproduced previous perioperative clinical findings that adults and children have similar risk of respiratory depression at the same plasma fentanyl concentration when specific endpoints (minute ventilation, CO2 tension in the blood) were used. However, our model points to a potential caveat that, in a perioperative setting, routine use of mechanical ventilation and supplemental oxygen maintained the blood and tissue oxygen partial pressures in patients and prevented the use of oxygen-related endpoints to evaluate the consequences of respiratory depression. In a community setting when such oxygenation procedures are not immediately available, our model suggests that the higher oxygen demand and reduced cerebrovascular reactivity could make children more susceptible to severe hypoxemia and brain hypoxia, even with the same plasma fentanyl concentration as adults. Our work indicates that when developing intervention strategies to protect children from opioid overdose in a community setting, these pediatric-specific factors may need to be considered.


Sujet(s)
Surdose d'opiacés , Insuffisance respiratoire , Adulte , Humains , Enfant , Insuffisance respiratoire/induit chimiquement , Oxygène , Analgésiques morphiniques/effets indésirables , Fentanyl/effets indésirables
5.
Burns ; 50(5): 1259-1268, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38492983

RÉSUMÉ

BACKGROUND: Keloid is a benign hyperplastic dermatosis with high recurrence rate and complex pathogenesis. There is no universally effective treatment yet. New therapies and elucidation of pathogenesis are urgently required. AIMS: To explore the function of IRE1α/XBP1 in keloid fibroblasts and to investigate the potential mechanism of artesunate in inhibiting keloid hyperplasia. METHODS: Human keloid fibroblasts (KFs) were cultured, and the expressions of XBP1 and TGF-ß1 were detected by immunohistochemistry. The expression of IRE1 was interfered with through cell transfection and the effects of IRE1 interference on cell proliferation and the cell cycle were assessed using MTS, colony formation assays, and flow cytometry. Detection of the expressions of XBP1 and TGF-ß1 by qRT-PCR and Western blot. Then artesunate was applied to a subset of the cells, and its effects on cell viability and the expression of related proteins using the same methods. RESULTS: The IRE1α/XBP1 pathway was activated in KFs. Knocking out the gene IRE1α can inhibit the expression of TGF-ß1, in addition, the cell viability and cell cycle progression of KFs were also significantly affected. After artesunate treatment, there was a remarkable reduction in cell proliferation. Meanwhile, the cell cycle of KFs treated with artesunate was blocked in G1 phase.After upregulating the expression of IRE1α and treating KFs with artesunate, both cell cycle and proliferation showed inhibitory effects, and related proteins also exhibited suppressed expression. CONCLUSIONS: The IRE1α/XBP1 pathway is activated in keloid, and inhibiting the expression of this pathway can affect the cell proliferation activity. In addition, artesunate also has a significant effect on fibroblast proliferation, and the IRE1α/XBP1 pathway may participate in this process. These findings suggest that IRE1α/XBP1 signal pathway may be a potential target for scar treatment, and artesunate could also be a powerful candidate for keloid treatment.


Sujet(s)
Artémisinines , Artésunate , Prolifération cellulaire , Endoribonucleases , Fibroblastes , Chéloïde , Protein-Serine-Threonine Kinases , Transduction du signal , Facteur de croissance transformant bêta-1 , Protéine-1 liant la boite X , Adulte , Femelle , Humains , Mâle , Artémisinines/pharmacologie , Artémisinines/usage thérapeutique , Artésunate/pharmacologie , Artésunate/usage thérapeutique , Cycle cellulaire/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , Endoribonucleases/métabolisme , Endoribonucleases/génétique , Fibroblastes/effets des médicaments et des substances chimiques , Fibroblastes/métabolisme , Chéloïde/métabolisme , Chéloïde/traitement médicamenteux , Chéloïde/anatomopathologie , Chéloïde/génétique , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique , Transduction du signal/effets des médicaments et des substances chimiques , Facteur de croissance transformant bêta-1/métabolisme , Protéine-1 liant la boite X/métabolisme , Protéine-1 liant la boite X/génétique
6.
Elife ; 122023 Dec 06.
Article de Anglais | MEDLINE | ID: mdl-38055614

RÉSUMÉ

The pathogenesis of antibodies in severe alcoholic hepatitis (SAH) remains unknown. We analyzed immunoglobulins (Ig) in explanted livers from SAH patients (n=45) undergoing liver transplantation and tissues from corresponding healthy donors (HD, n=10) and found massive deposition of IgG and IgA isotype antibodies associated with complement fragment C3d and C4d staining in ballooned hepatocytes in SAH livers. Ig extracted from SAH livers, but not patient serum exhibited hepatocyte killing efficacy. Employing human and Escherichia coli K12 proteome arrays, we profiled the antibodies extracted from explanted SAH, livers with other diseases, and HD livers. Compared with their counterparts extracted from livers with other diseases and HD, antibodies of IgG and IgA isotypes were highly accumulated in SAH and recognized a unique set of human proteins and E. coli antigens. Further, both Ig- and E. coli-captured Ig from SAH livers recognized common autoantigens enriched in several cellular components including cytosol and cytoplasm (IgG and IgA), nucleus, mitochondrion, and focal adhesion (IgG). Except IgM from primary biliary cholangitis livers, no common autoantigen was recognized by Ig- and E. coli-captured Ig from livers with other diseases. These findings demonstrate the presence of cross-reacting anti-bacterial IgG and IgA autoantibodies in SAH livers.


Sujet(s)
Hépatite alcoolique , Humains , Escherichia coli , Immunoglobuline A , Autoanticorps , Immunoglobuline G , Immunoglobuline M
7.
BMC Bioinformatics ; 24(1): 413, 2023 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-37914988

RÉSUMÉ

BACKGROUND: During drug development, it is essential to gather information about the change of clinical exposure of a drug (object) due to the pharmacokinetic (PK) drug-drug interactions (DDIs) with another drug (precipitant). While many natural language processing (NLP) methods for DDI have been published, most were designed to evaluate if (and what kind of) DDI relationships exist in the text, without identifying the direction of DDI (object vs. precipitant drug). Here we present a method for the automatic identification of the directionality of a PK DDI from literature or drug labels. METHODS: We reannotated the Text Analysis Conference (TAC) DDI track 2019 corpus for identifying the direction of a PK DDI and evaluated the performance of a fine-tuned BioBERT model on this task by following the training and validation steps prespecified by TAC. RESULTS: This initial attempt showed the model achieved an F-score of 0.82 in identifying sentences as containing PK DDI and an F-score of 0.97 in identifying object versus precipitant drugs in those sentences. DISCUSSION AND CONCLUSION: Despite a growing list of NLP methods for DDI extraction, most of them use a common set of corpora to perform general purpose tasks (e.g., classifying a sentence into one of several fixed DDI categories). There is a lack of coordination between the drug development and biomedical informatics method development community to develop corpora and methods to perform specific tasks (e.g., extract clinical exposure changes due to PK DDI). We hope that our effort can encourage such a coordination so that more "fit for purpose" NLP methods could be developed and used to facilitate the drug development process.


Sujet(s)
Apprentissage profond , Traitement du langage naturel , Interactions médicamenteuses , Fouille de données/méthodes , Langage
8.
Gut Microbes ; 15(2): 2271150, 2023 12.
Article de Anglais | MEDLINE | ID: mdl-37908118

RÉSUMÉ

Antibiotics used systemically to treat infections may have off-target effects on the gut microbiome, potentially resulting in the emergence of drug-resistant bacteria or selection of pathogenic species. These organisms may present a risk to the host and spread to the environment with a risk of transmission in the community. To investigate the risk of emergent antibiotic resistance in the gut microbiome following systemic treatment with antibiotics, this metagenomic analysis project used next-generation sequencing, a custom-built metagenomics pipeline, and differential abundance analysis to study the effect of antibiotics (ampicillin, ciprofloxacin, and fosfomycin) in monotherapy and different combinations at high and low doses, to determine the effect on resistome and taxonomic composition in the gut of Balb/c mice. The results showed that low-dose monotherapy treatments showed little change in microbiome composition but did show an increase in expression of many antibiotic-resistant genes (ARGs) posttreatment. Dual combination treatments allowed the emergence of some conditionally pathogenic bacteria and some increase in the abundance of ARGs despite a general decrease in microbiota diversity. Triple combination treatment was the most successful in inhibiting emergence of relevant opportunistic pathogens and completely suppressed all ARGs after 72 h of treatment. The relative abundances of mobile genetic elements that can enhance transmission of antibiotic resistance either decreased or remained the same for combination therapy while increasing for low-dose monotherapy. Combination therapy prevented the emergence of ARGs and decreased bacterial diversity, while low-dose monotherapy treatment increased ARGs and did not greatly change bacterial diversity.


Sujet(s)
Microbiome gastro-intestinal , Microbiote , Animaux , Souris , Antibactériens/pharmacologie , Ampicilline/pharmacologie , Ciprofloxacine/pharmacologie , Bactéries/génétique , Gènes bactériens
9.
bioRxiv ; 2023 Feb 23.
Article de Anglais | MEDLINE | ID: mdl-36865259

RÉSUMÉ

The pathogenesis of antibodies in severe alcoholic hepatitis (SAH) remains unknown. We sought to determine if there was antibody deposition in SAH livers and whether antibodies extracted from SAH livers were cross-reactive against both bacterial antigens and human proteins. We analyzed immunoglobulins (Ig) in explanted livers from SAH patients (n=45) undergoing liver transplantation and tissue from corresponding healthy donors (HD, n=10) and found massive deposition of IgG and IgA isotype antibodies associated with complement fragment C3d and C4d staining in ballooned hepatocytes in SAH livers. Ig extracted from SAH livers, but not patient serum exhibited hepatocyte killing efficacy in an antibody-dependent cell-mediated cytotoxicity (ADCC) assay. Employing human proteome arrays, we profiled the antibodies extracted from explanted SAH, alcoholic cirrhosis (AC), nonalcoholic steatohepatitis (NASH), primary biliary cholangitis (PBC), autoimmune hepatitis (AIH), hepatitis B virus (HBV), hepatitis C virus (HCV) and HD livers and found that antibodies of IgG and IgA isotypes were highly accumulated in SAH and recognized a unique set of human proteins as autoantigens. The use of an E. coli K12 proteome array revealed the presence of unique anti- E. coli antibodies in SAH, AC or PBC livers. Further, both Ig and E. coli captured Ig from SAH livers recognized common autoantigens enriched in several cellular components including cytosol and cytoplasm (IgG and IgA), nucleus, mitochondrion and focal adhesion (IgG). Except IgM from PBC livers, no common autoantigen was recognized by Ig and E. coli captured Ig from AC, HBV, HCV, NASH or AIH suggesting no cross-reacting anti- E. coli autoantibodies. The presence of cross-reacting anti-bacterial IgG and IgA autoantibodies in the liver may participate in the pathogenesis of SAH.

10.
JAMA ; 328(14): 1405-1414, 2022 10 11.
Article de Anglais | MEDLINE | ID: mdl-36219407

RÉSUMÉ

Importance: Opioids can cause severe respiratory depression by suppressing feedback mechanisms that increase ventilation in response to hypercapnia. Following the addition of boxed warnings to benzodiazepine and opioid products about increased respiratory depression risk with simultaneous use, the US Food and Drug Administration evaluated whether other drugs that might be used in place of benzodiazepines may cause similar effects. Objective: To study whether combining paroxetine or quetiapine with oxycodone, compared with oxycodone alone, decreases the ventilatory response to hypercapnia. Design, Setting, and Participants: Randomized, double-blind, crossover clinical trial at a clinical pharmacology unit (West Bend, Wisconsin) with 25 healthy participants from January 2021 through May 25, 2021. Interventions: Oxycodone 10 mg on days 1 and 5 and the following in a randomized order for 5 days: paroxetine 40 mg daily, quetiapine twice daily (increasing daily doses from 100 mg to 400 mg), or placebo. Main Outcomes and Measures: Ventilation at end-tidal carbon dioxide of 55 mm Hg (hypercapnic ventilation) using rebreathing methodology assessed for paroxetine or quetiapine with oxycodone, compared with placebo and oxycodone, on days 1 and 5 (primary) and for paroxetine or quetiapine alone compared with placebo on day 4 (secondary). Results: Among 25 participants (median age, 35 years [IQR, 30-40 years]; 11 female [44%]), 19 (76%) completed the trial. The mean hypercapnic ventilation was significantly decreased with paroxetine plus oxycodone vs placebo plus oxycodone on day 1 (29.2 vs 34.1 L/min; mean difference [MD], -4.9 L/min [1-sided 97.5% CI, -∞ to -0.6]; P = .01) and day 5 (25.1 vs 35.3 L/min; MD, -10.2 L/min [1-sided 97.5% CI, -∞ to -6.3]; P < .001) but was not significantly decreased with quetiapine plus oxycodone vs placebo plus oxycodone on day 1 (33.0 vs 34.1 L/min; MD, -1.2 L/min [1-sided 97.5% CI, -∞ to 2.8]; P = .28) or on day 5 (34.7 vs 35.3 L/min; MD, -0.6 L/min [1-sided 97.5% CI, -∞ to 3.2]; P = .37). As a secondary outcome, mean hypercapnic ventilation was significantly decreased on day 4 with paroxetine alone vs placebo (32.4 vs 41.7 L/min; MD, -9.3 L/min [1-sided 97.5% CI, -∞ to -3.9]; P < .001), but not with quetiapine alone vs placebo (42.8 vs 41.7 L/min; MD, 1.1 L/min [1-sided 97.5% CI, -∞ to 6.4]; P = .67). No drug-related serious adverse events were reported. Conclusions and Relevance: In this preliminary study involving healthy participants, paroxetine combined with oxycodone, compared with oxycodone alone, significantly decreased the ventilatory response to hypercapnia on days 1 and 5, whereas quetiapine combined with oxycodone did not cause such an effect. Additional investigation is needed to characterize the effects after longer-term treatment and to determine the clinical relevance of these findings. Trial Registration: ClinicalTrials.gov Identifier: NCT04310579.


Sujet(s)
Analgésiques morphiniques , Antidépresseurs , Oxycodone , Paroxétine , Fumarate de quétiapine , Insuffisance respiratoire , Adulte , Analgésiques morphiniques/effets indésirables , Analgésiques morphiniques/pharmacologie , Antidépresseurs/effets indésirables , Antidépresseurs/pharmacologie , Benzodiazépines/effets indésirables , Benzodiazépines/pharmacologie , Dioxyde de carbone/analyse , Méthode en double aveugle , Femelle , Humains , Hypercapnie/étiologie , Oxycodone/effets indésirables , Oxycodone/pharmacologie , Paroxétine/effets indésirables , Paroxétine/pharmacologie , Fumarate de quétiapine/effets indésirables , Fumarate de quétiapine/pharmacologie , Respiration/effets des médicaments et des substances chimiques , Insuffisance respiratoire/induit chimiquement , Insuffisance respiratoire/diagnostic
11.
Clin Pharmacol Ther ; 112(4): 882-891, 2022 10.
Article de Anglais | MEDLINE | ID: mdl-35694844

RÉSUMÉ

With the ongoing global pandemic of coronavirus disease 2019 (COVID-19), there is an urgent need to accelerate the traditional drug development process. Many studies identified potential COVID-19 therapies based on promising nonclinical data. However, the poor translatability from nonclinical to clinical settings has led to failures of many of these drug candidates in the clinical phase. In this study, we propose a mechanism-based, quantitative framework to translate nonclinical findings to clinical outcome. Adopting a modularized approach, this framework includes an in silico disease model for COVID-19 (virus infection and human immune responses) and a pharmacological component for COVID-19 therapies. The disease model was able to reproduce important longitudinal clinical data for patients with mild and severe COVID-19, including viral titer, key immunological cytokines, antibody responses, and time courses of lymphopenia. Using remdesivir as a proof-of-concept example of model development for the pharmacological component, we developed a pharmacological model that describes the conversion of intravenously administered remdesivir as a prodrug to its active metabolite nucleoside triphosphate through intracellular metabolism and connected it to the COVID-19 disease model. After being calibrated with the placebo arm data, our model was independently and quantitatively able to predict the primary endpoint (time to recovery) of the remdesivir clinical study, Adaptive Covid-19 Clinical Trial (ACTT). Our work demonstrates the possibility of quantitatively predicting clinical outcome based on nonclinical data and mechanistic understanding of the disease and provides a modularized framework to aid in candidate drug selection and clinical trial design for COVID-19 therapeutics.


Sujet(s)
Traitements médicamenteux de la COVID-19 , AMP/analogues et dérivés , Alanine/analogues et dérivés , Antiviraux/pharmacologie , Antiviraux/usage thérapeutique , Calibrage , Humains , Pharmacologie des réseaux , SARS-CoV-2
12.
Clin Pharmacol Ther ; 112(5): 1020-1032, 2022 11.
Article de Anglais | MEDLINE | ID: mdl-35766413

RÉSUMÉ

In response to a surge of deaths from synthetic opioid overdoses, there have been increased efforts to distribute naloxone products in community settings. Prior research has assessed the effectiveness of naloxone in the hospital setting; however, it is challenging to assess naloxone dosing regimens in the community/first-responder setting, including reversal of respiratory depression effects of fentanyl and its derivatives (fentanyls). Here, we describe the development and validation of a mechanistic model that combines opioid mu receptor binding kinetics, opioid agonist and antagonist pharmacokinetics, and human respiratory and circulatory physiology, to evaluate naloxone dosing to reverse respiratory depression. Validation supports our model, which can quantitatively predict displacement of opioids by naloxone from opioid mu receptors in vitro, hypoxia-induced cardiac arrest in vivo, and opioid-induced respiratory depression in humans from different fentanyls. After validation, overdose simulations were performed with fentanyl and carfentanil followed by administration of different intramuscular naloxone products. Carfentanil induced more cardiac arrest events and was more difficult to reverse than fentanyl. Opioid receptor binding data indicated that carfentanil has substantially slower dissociation kinetics from the opioid receptor compared with nine other fentanyls tested, which likely contributes to the difficulty in reversing carfentanil. Administration of the same dose of naloxone intramuscularly from two different naloxone products with different formulations resulted in differences in the number of virtual patients experiencing cardiac arrest. This work provides a robust framework to evaluate dosing regimens of opioid receptor antagonists to reverse opioid-induced respiratory depression, including those caused by newly emerging synthetic opioids.


Sujet(s)
Mauvais usage des médicaments prescrits , Arrêt cardiaque , Surdose d'opiacés , Insuffisance respiratoire , Humains , Naloxone/effets indésirables , Antagonistes narcotiques/effets indésirables , Analgésiques morphiniques/effets indésirables , Récepteur mu/métabolisme , Fentanyl/effets indésirables , Mauvais usage des médicaments prescrits/traitement médicamenteux , Insuffisance respiratoire/induit chimiquement , Insuffisance respiratoire/traitement médicamenteux , Arrêt cardiaque/induit chimiquement , Arrêt cardiaque/traitement médicamenteux , Récepteurs aux opioïdes/usage thérapeutique
13.
ACS Appl Mater Interfaces ; 14(11): 13942-13951, 2022 Mar 23.
Article de Anglais | MEDLINE | ID: mdl-35275490

RÉSUMÉ

The development of gas sensors based on two-dimensional (2D) layered materials has received lots of focus attributing to their excellent gas sensitivity. Here, a black phosphorus (BP) gas sensor device is fabricated based on high-quality few-layered BP microribbons using a facile route. Although BP is well known to oxidize in ambient conditions, energy dispersive spectroscopy (EDS) mapping manifests that the few-layered BP microribbons undergo slight oxidation and contamination during the grinding process. It is interesting that the surface and side of BP microribbons have nanoscale thin films and step-like nanoscale thin films, respectively, owing to the in-plane slip of the few-layered BP microribbons in the process of grinding, which are different from the conventional BP bulk crystals. The layered BP microribbon gas sensor demonstrated a high response to low-concentration NO2 and a very low limit of detection (LOD) of 0.4 ppb of NO2 under N2 and air conditions, which is the lowest LOD for NO2 detection reported so far. The mechanisms for excellently sensitive detection of NO2 for the BP microribbons have been investigated by first-principles calculations combined with experiment results, revealing that the sensitization mechanisms of the BP microribbon sensor are abundant nanoscale thin films, an optimum bandgap range with optimal carrier concentration, a hierarchical homojunction structure, and strong adsorption energy to NO2. In addition, the BP microribbon sensor demonstrated high selectivity to NO2, a low LOD under a high relative humidity, and good repeatability. The reported results of the BP sensor may provide great promise for improving the performance of other 2D material-based gas sensors and may expand sensing applications.

14.
Biol Direct ; 17(1): 1, 2022 01 06.
Article de Anglais | MEDLINE | ID: mdl-34991683

RÉSUMÉ

BACKGROUND: Long non-coding RNAs (lncRNAs) have been reported to be vital factors to affect the expression of genes and proteins. Also, it has been proved that the abnormal expression or mutation of lncRNAs stands as a signal of metastasis and proliferation of cancer. Nevertheless, the majority of lncRNAs still need to be explored in abundant cancers especially in oral squamous cell carcinoma (OSCC). METHODS: RT-qPCR assays were applied to test the expression of RNAs. Mechanism assays were performed to verify the combination among NORAD, TPM4 and miR-577. Also, functional assays were conducted to verify the function of RNAs on OSCC cells. RESULTS: LncRNA NORAD was highly expressed in OSCC tissues and cells. NORAD silencing repressed the biological behaviors of OSCC cells. MiR-577 was found in OSCC with low expression, and RIP assays illustrated that NORAD, miR-577 and TPM4 coexisted in RNA-induced silencing complexes. Rescue assays proved that the overexpression of TPM4 could recover the effect of NORAD silencing on OSCC progression. CONCLUSIONS: It was revealed that NORAD functioned as a tumor promoter to sponge miR-577 thus elevating TPM4 in OSCC, which indicated that NORAD was worthy to be studied as a target for the treatment of OSCC.


Sujet(s)
Carcinome épidermoïde , Tumeurs de la tête et du cou , microARN , Tumeurs de la bouche , ARN long non codant , Carcinome épidermoïde/génétique , Lignée cellulaire tumorale , Prolifération cellulaire/génétique , Régulation de l'expression des gènes tumoraux , Tumeurs de la tête et du cou/génétique , Humains , microARN/génétique , microARN/métabolisme , Tumeurs de la bouche/génétique , Tumeurs de la bouche/anatomopathologie , ARN long non codant/génétique , ARN long non codant/métabolisme , Carcinome épidermoïde de la tête et du cou/génétique , Tropomyosine/génétique , Tropomyosine/métabolisme , Tropomyosine/pharmacologie
15.
Int J Dermatol ; 61(2): 252-256, 2022 Feb.
Article de Anglais | MEDLINE | ID: mdl-34520570

RÉSUMÉ

Bullous pemphigoid (BP) patients were vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection because they have similar risk factors, so we should pay attention to patients with BP during the epidemic of coronavirus disease-19 (COVID-19). As far as treatment is concerned, many strategies for BP were changed during the epidemic. Plasmapheresis not only has been included in the guidelines for BP but also has been used successfully to rescue COVID-19 patients, especially in severe cases. Therefore, it is a feasible choice for BP patients, especially for refractory BP patients, infected with SARS-CoV-2. Apart from these, we have reviewed some points for attention during the plasmapheresis session.


Sujet(s)
COVID-19 , Pemphigoïde bulleuse , Humains , Pemphigoïde bulleuse/thérapie , Plasmaphérèse , SARS-CoV-2
16.
Med Sci Monit ; 27: e931544, 2021 Aug 24.
Article de Anglais | MEDLINE | ID: mdl-34428195

RÉSUMÉ

BACKGROUND This study explored the clinical effects of whole-process digitalization (WD)-assisted immediate implant placement (IIP) and immediate restoration (IR) in the aesthetic zone and clarified the clinical procedures. MATERIAL AND METHODS Patients who received maxillary aesthetic region IIP and IR treatment were randomly distributed into WD-assisted and conventional groups. Postoperative assessment included implant accuracy, marginal bone loss, aesthetic evaluation, and patient satisfaction evaluation. The aesthetic evaluation included visual analog score (VAS), pink aesthetic score (PES), and white aesthetic score (WES). Numerical data, measurement data, and grade data were analyzed by χ² test, t test, and Mann-Whitney U test. RESULTS The WD-assisted group exhibited decreased implant accuracy, including coronal deviation, apical deviation, angular deviation, and depth deviation, compared with the conventional group (P<0.05). The marginal bone loss in both the mesiodistal direction and the buccolingual direction were significantly lower in the WD-assisted group than in the conventional group (P<0.05). The VAS, PES, and WES were all significantly higher in the WD-assisted group than in the conventional group at 3, 6, and 12 months after surgery (P<0.05). Patients in the WD-assisted group also reported a higher satisfaction level than those in the conventional group (P<0.05). CONCLUSIONS WD-assisted IIP and IR treatment in the aesthetic zone increased implant accuracy, decreased marginal bone loss, improved aesthetic effect, and increased patient satisfaction compared with conventional treatment. Therefore, WD-assisted IIP and IR treatment constitutes a promising approach in clinical oral implantology.


Sujet(s)
Pose d'implant dentaire/méthodes , Pose d'implant dentaire/normes , Implants dentaires , Dentisterie esthétique , Adulte , Femelle , Humains , Imagerie tridimensionnelle , Mâle , Maxillaire/chirurgie , Satisfaction des patients , Radiographie , Chirurgie assistée par ordinateur/méthodes , Chirurgie assistée par ordinateur/normes , Facteurs temps , Résultat thérapeutique
17.
JAMA Netw Open ; 4(6): e2118253, 2021 06 01.
Article de Anglais | MEDLINE | ID: mdl-34181009

RÉSUMÉ

Importance: A publication reported that N-nitrosodimethylamine (NDMA), a probable human carcinogen, was formed when ranitidine and nitrite were added to simulated gastric fluid. However, the nitrite concentrations used were greater than the range detected in acidic gastric fluid in prior clinical studies. Objective: To characterize NDMA formation following the addition of ranitidine to simulated gastric fluid using combinations of fluid volume, pH levels, and nitrite concentrations, including physiologic levels. Design, Setting, and Participants: One 150-mg ranitidine tablet was added to 50 or 250 mL of simulated gastric fluid with a range of nitrite concentrations from the upper range of physiologic (100 µmol/L) to higher concentrations (10 000 µmol/L) with a range of pH levels. NDMA amounts were assessed with a liquid chromatography-mass spectrometry method. Main Outcomes and Measures: NDMA detected in simulated gastric fluid 2 hours after adding ranitidine. Results: At a supraphysiologic nitrite concentration (ie, 10 000 µmol/L), the mean (SD) amount of NDMA detected in 50 mL simulated gastric fluid 2 hours after adding ranitidine increased from 222 (12) ng at pH 5 to 11 822 (434) ng at pH 1.2. Subsequent experiments with 50 mL of simulated gastric fluid at pH 1.2 with no added nitrite detected a mean (SD) of 22 (2) ng of NDMA, which is the background amount present in the ranitidine tablets. Similarly, at the upper range of physiologic nitrite (ie, 100 µmol/L) or at nitrite concentrations as much as 50-fold greater (1000 or 5000 µmol/L) only background mean (SD) amounts of NDMA were observed (21 [3] ng, 24 [2] ng, or 24 [3] ng, respectively). With 250 mL of simulated gastric fluid, no NDMA was detected at the upper physiologic range (100 µmol/L) or 10-fold physiologic (1000 µmol/L) nitrite concentrations, while NDMA was detected (mean [SD] level, 7353 [183] ng) at a 50-fold physiologic nitrite concentration (5000 µmol/L). Conclusions and Relevance: In this in vitro study of ranitidine tablets added to simulated gastric fluid with different nitrite concentrations, ranitidine conversion to NDMA was not detected until nitrite was 5000 µmol/L, which is 50-fold greater than the upper range of physiologic gastric nitrite concentrations at acidic pH. These findings suggest that ranitidine is not converted to NDMA in gastric fluid at physiologic conditions.


Sujet(s)
N-Méthyl-N-nitroso-méthanamine/métabolisme , Absorption gastro-intestinale/physiologie , Ranitidine/analyse , Antihistaminiques des récepteurs H2/analyse , Antihistaminiques des récepteurs H2/sang , Humains , Ranitidine/sang
18.
Antimicrob Resist Infect Control ; 10(1): 36, 2021 02 15.
Article de Anglais | MEDLINE | ID: mdl-33588951

RÉSUMÉ

INTRODUCTION: According to the Centers for Disease Control's 2015 Hospital Acquired Infection Hospital Prevalence Survey, 1 in 31 hospital patients was infected with at least one nosocomial pathogen while being treated for unrelated issues. Many studies associate antibiotic administration with nosocomial infection occurrence. However, to our knowledge, there is little to no direct evidence of antibiotic administration selecting for nosocomial opportunistic pathogens. AIM: This study aims to confirm gut microbiota shifts in an animal model of antibiotic treatment to determine whether antibiotic use favors pathogenic bacteria. METHODOLOGY: We utilized next-generation sequencing and in-house metagenomic assembly and taxonomic assignment pipelines on the fecal microbiota of a urinary tract infection mouse model with and without antibiotic treatment. RESULTS: Antibiotic therapy decreased the number of detectable species of bacteria by at least 20-fold. Furthermore, the gut microbiota of antibiotic treated mice had a significant increase of opportunistic pathogens that have been implicated in nosocomial infections, like Acinetobacter calcoaceticus/baumannii complex, Chlamydia abortus, Bacteroides fragilis, and Bacteroides thetaiotaomicron. Moreover, antibiotic treatment selected for antibiotic resistant gene enriched subpopulations for many of these opportunistic pathogens. CONCLUSIONS: Oral antibiotic therapy may select for common opportunistic pathogens responsible for nosocomial infections. In this study opportunistic pathogens present after antibiotic therapy harbored more antibiotic resistant genes than populations of opportunistic pathogens before treatment. Our results demonstrate the effects of antibiotic therapy on induced dysbiosis and expansion of opportunistic pathogen populations and antibiotic resistant subpopulations of those pathogens. Follow-up studies with larger samples sizes and potentially controlled clinical investigations should be performed to confirm our findings.


Sujet(s)
Antibactériens/pharmacologie , Infection croisée/microbiologie , Microbiome gastro-intestinal , Infections opportunistes/microbiologie , Animaux , Antibactériens/effets indésirables , Bactéries/classification , Dysbiose/induit chimiquement , Femelle , Souris , Souris de lignée BALB C
19.
Ying Yong Sheng Tai Xue Bao ; 31(10): 3365-3375, 2020 Oct.
Article de Chinois | MEDLINE | ID: mdl-33314826

RÉSUMÉ

We explored the impacts of different mixed trees on the improvement of soil microecological environment in rhizosphere of Parashorea chinensis, including pure P. chinensis plantation (WC), mixed P. chinensis and Dalbergia odorifera plantation (WJ), mixed P. chinensis and Eucalyptus urophylla × E. grandis plantation (WA). Soil physical and chemical properties were analyzed. The characteristics and distribution of soil microbes in the rhizosphere were measured by the methods of Biolog-Eco micro plate and phospholipid fatty acid methyl ester (PLFA). Soil water content, soil pH, organic matter, total nitrogen, total potassium content and the activities of sucrase, urease and acid phosphatase in rhizosphere soil of WA were significantly higher than those of WC and WJ, without difference between WC and WJ. There were no significant differences in the contents of nitrate nitrogen, ammonium nitrogen, and available potassium between WA and WJ, which were obviously higher than those in WC. There were significant differences in total phosphorus and available phosphorus contents among the three stands, with an order of WJ>WA>WC. The average color change rate (AWCD), Shannon index, Simpson index, McIntosh index and the utilization of six types of carbon source substrates in microorganisms were the highest in the rhizosphere soil of WA, followed by WJ and WC. Results of principal component analysis showed that carbohydrates, amino acids and phenolic acids were the main carbon sources for microbial utilization. In WA, the PLFA content of rhizosphere soil microorganism, bacteria, fungi and actinomycetes was the highest, followed by WJ and WC. There were significant positive correlation between soil physical and che-mical properties and the microbial characteristics. Combining the physical and chemical properties of soil and the functional and structural characteristics of microbial communities, the mixed P. chinensis and E. urophylla × E.grandis plantation may be most conductive to the improvement of the rhizosphere microecological environment and increase soil available nutrients at the young tree phase of P. chinensis.


Sujet(s)
Microbiote , Rhizosphère , Carbone , Chine , Azote/analyse , Sol , Microbiologie du sol
20.
J Pharmacol Toxicol Methods ; 105: 106890, 2020 Sep.
Article de Anglais | MEDLINE | ID: mdl-32574700

RÉSUMÉ

INTRODUCTION: In response to the ongoing shift of the regulatory cardiac safety paradigm, a recent White Paper proposed general principles for developing and implementing proarrhythmia risk prediction models. These principles included development strategies to validate models, and implementation strategies to ensure a model developed by one lab can be used by other labs in a consistent manner in the presence of lab-to-lab experimental variability. While the development strategies were illustrated through the validation of the model under the Comprehensive In vitro Proarrhythmia Assay (CiPA), the implementation strategies have not been adopted yet. METHODS: The proposed implementation strategies were applied to the CiPA model by performing a sensitivity analysis to identify a subset of calibration drugs that were most critical in determining the classification thresholds for proarrhythmia risk prediction. RESULTS: The selected calibration drugs were able to recapitulate classification thresholds close to those calculated from the full list of CiPA drugs. Using an illustrative dataset it was shown that a new lab could use these calibration drugs to establish its own classification thresholds (lab-specific calibration), and verify that the model prediction accuracy in the new lab is comparable to that in the original lab where the model was developed (lab-specific validation). DISCUSSION: This work used the CiPA model as an example to illustrate how to adopt the proposed model implementation strategies to select calibration drugs and perform lab-specific calibration and lab-specific validation. Generic in nature, these strategies could be generally applied to different proarrhythmia risk prediction models using various experimental systems under the new paradigm.


Sujet(s)
Troubles du rythme cardiaque/induit chimiquement , Dosage biologique/méthodes , Effets secondaires indésirables des médicaments/prévention et contrôle , Myocytes cardiaques/effets des médicaments et des substances chimiques , Préparations pharmaceutiques/administration et posologie , Calibrage , Évaluation préclinique de médicament/méthodes , Électrocardiographie/méthodes , Humains
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...