Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 16 de 16
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Environ Sci (China) ; 147: 131-152, 2025 Jan.
Article de Anglais | MEDLINE | ID: mdl-39003035

RÉSUMÉ

Biomineralization has garnered significant attention in the field of wastewater treatment due to its notable cost reduction compared to conventional methods. The reinjection water from oilfields containing an exceedingly high concentration of calcium and ferric ions will pose a major hazard in production. However, the utilization of biomineralization for precipitating these ions has been scarcely investigated due to limited tolerance among halophiles towards such extreme conditions. In this study, free and immobilized halophiles Virgibacillus dokdonensis were used to precipitate these ions and the effects were compared, at the same time, biomineralization mechanisms and mineral characteristics were further explored. The results show that bacterial concentration and carbonic anhydrase activity were higher when additionally adding ferric ion based on calcium ion; the content of protein, polysaccharides, deoxyribonucleic acid and humic substances in the extracellular polymers also increased compared to control. Calcium ions were biomineralized into calcite and vaterite with multiple morphology. Due to iron doping, the crystallinity and thermal stability of calcium carbonate decreased, the content of OC = O, NC = O and CO-PO3 increased, the stable carbon isotope values became much more negative, and ß-sheet in minerals disappeared. Higher calcium concentrations facilitated ferric ion precipitation, while ferric ions hindered calcium precipitation. The immobilized bacteria performed better in ferric ion removal, with a precipitation ratio exceeding 90%. Free bacteria performed better in calcium removal, and the precipitation ratio reached a maximum of 56%. This research maybe provides some reference for the co-removal of calcium and ferric ions from the oilfield wastewater.


Sujet(s)
Calcium , Fer , Virgibacillus , Calcium/composition chimique , Fer/composition chimique , Virgibacillus/métabolisme , Élimination des déchets liquides/méthodes , Précipitation chimique , Eaux usées/composition chimique , Biominéralisation , Carbonate de calcium/composition chimique
2.
J Hazard Mater ; 475: 134923, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-38889469

RÉSUMÉ

This study investigates the co-precipitation of calcium and barium ions in hypersaline wastewater under the action of Bacillus licheniformis using microbially induced carbonate precipitation (MICP) technology, as well as the bactericidal properties of the biomineralized product vaterite. The changes in carbonic anhydrase activity, pH, carbonate and bicarbonate concentrations in different biomineralization systems were negatively correlated with variations in metal ion concentrations, while the changes in polysaccharides and protein contents in bacterial extracellular polymers were positively correlated with variations in barium concentrations. In the mixed calcium and barium systems, the harvested minerals were vaterite containing barium. The increasing concentrations of calcium promoted the incorporation and adsorption of barium onto vaterite. The presence of barium significantly increased the contents of O-CO, N-CO, and Ba-O in vaterite. Calcium promoted barium precipitation, but barium inhibited calcium precipitation. After being treated by immobilized bacteria, the concentrations of calcium and barium ions decreased from 400 and 274 to 1.72 and 0 mg/L (GB/T15454-2009 and GB8978-1996). Intracellular minerals were also vaterite containing barium. Extracellular vaterite exhibited bactericidal properties. This research presents a promising technique for simultaneously removing and recycling hazardous heavy metals and calcium in hypersaline wastewater.


Sujet(s)
Baryum , Calcium , Précipitation chimique , Eaux usées , Eaux usées/composition chimique , Baryum/composition chimique , Calcium/composition chimique , Calcium/métabolisme , Bacillus/métabolisme , Carbonate de calcium/composition chimique , Carbonate de calcium/métabolisme , Polluants chimiques de l'eau/métabolisme , Polluants chimiques de l'eau/composition chimique , Recyclage , Carbonates/composition chimique , Carbonic anhydrases/métabolisme , Purification de l'eau/méthodes
3.
World J Microbiol Biotechnol ; 40(6): 182, 2024 Apr 26.
Article de Anglais | MEDLINE | ID: mdl-38668902

RÉSUMÉ

The effect of barium ions on the biomineralization of calcium and magnesium ions is often overlooked when utilizing microbial-induced carbonate precipitation technology for removing barium, calcium, and magnesium ions from oilfield wastewater. In this study, Bacillus licheniformis was used to bio-precipitate calcium, magnesium, and barium ions. The effects of barium ions on the physiological and biochemical characteristics of bacteria, as well as the components of extracellular polymers and mineral characteristics, were also studied in systems containing coexisting barium, calcium, and magnesium ions. The results show that the increasing concentrations of barium ions decreased pH, carbonic anhydrase activity, and concentrations of bicarbonate and carbonate ions, while it increased the contents of humic acids, proteins, polysaccharides, and DNA in extracellular polymers in the systems containing all three types of ions. With increasing concentrations of barium ions, the content of magnesium within magnesium-rich calcite and the size of minerals precipitated decreased, while the full width at half maximum of magnesium-rich calcite, the content of O-C=O and N-C=O, and the diversity of protein secondary structures in the minerals increased in systems containing all three coexisting ions. Barium ions does inhibit the precipitation of calcium and magnesium ions, but the immobilized bacteria can mitigate the inhibitory effect. The precipitation ratios of calcium, magnesium, and barium ions reached 81-94%, 68-82%, and 90-97%. This research provides insights into the formation of barium-enriched carbonate minerals and offers improvements for treating oilfield wastewater.


Sujet(s)
Bacillus licheniformis , Baryum , Biominéralisation , Calcium , Magnésium , Magnésium/métabolisme , Bacillus licheniformis/métabolisme , Baryum/métabolisme , Calcium/métabolisme , Eaux usées/microbiologie , Eaux usées/composition chimique , Concentration en ions d'hydrogène , Ions , Carbonic anhydrases/métabolisme , Carbonate de calcium/métabolisme
4.
J Environ Manage ; 356: 120714, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38537463

RÉSUMÉ

The assembly process of Organic Matter (OM) from single molecules to polymers and the formation process of Ca-CO3 ion-pairs are explored at the micro-scale, and then the relationship between OM and carbonate based on the results of microbially-induced carbonate precipitation (MICP) laboratory experiments is established at the macro-scale. Molecular dynamics (MD) is used to model the assembly of OM (a) in an aqueous solution, (b) on surfaces of calcite (10 1‾ 4) crystals and (c) on defective calcite (101‾ 4) crystal surfaces. From the MICP experiments, carbonate minerals containing abundant OM were precipitated and were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The results of the MD show that OM is assembled into polymers in all three simulation systems. Although the Ca-CO3 ion-pairs and OM were briefly combined, the aggregation assembly of OM molecules and the precipitation of carbonate calcium are not related in the long run. The highly specific surface area of the defective calcite shows an increase in the adsorption of OM. The van der Waals forces, which are primarily responsible for controlling the assembly of OM molecules, increase with the degree of aggregation. According to the MICP experiments, OM is enriched on the mineral surfaces, and more OM is found at the steps of defective crystals with their larger surface areas. Through MD and MICP laboratory experiments, this work systematically describes the interaction of OM and carbonate minerals from the micro to the macro scales, and this provides insight into the interaction between OM and carbonates and biogeochemical processes related to the accumulation of OM in sediments.


Sujet(s)
Carbonate de calcium , Carbonates , Carbonates/composition chimique , Carbonate de calcium/composition chimique , Minéraux , Adsorption , Polymères , Précipitation chimique
5.
Sci Total Environ ; 915: 169971, 2024 Mar 10.
Article de Anglais | MEDLINE | ID: mdl-38211867

RÉSUMÉ

Carbonates represent major sedimentary rocks in on the continental and oceanic crust of Earth and are often closely related to microbial activities. However, the origin of magnesium-containing carbonates, such as dolomites, has not yet been fully resolved and was debated for many years. In order to reveal the specific role of organic components and microbes on the precipitation of magnesium ions, different dolomitization experiments were carried out with various setups for the presence of eight amino acids and microbes. The Gibbs free energy for dehydration of Mg[6(H2O)]2+ and organic­magnesium complexes (OMC) at the calcite (101¯4) step edges were calculated by density functional theory (DFT). Combined results of X-ray diffraction (XRD), scanning electron microscope-energy disperse spectroscopy (SEM-EDS), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM) indicated that magnesium ions were incorporated into the crystal lattice of calcite after calcite reacting with organic­magnesium solutions (OMS). Dolomite was formed on the surface of calcite under the presence of microbes. The Gibbs free energy barrier of asp, glu, gly, thr, tyr, lys, ser, and ala bonding to Mg[6(H2O)]2+ were 17.8, 16.2, 14.8, 16.5, 19.2, 14.5, 19.0, 17.0 kcal/mol, those are lower than that of the direct dehydration of Mg[6(H2O)]2+ of 19.45 kcal/mol. The Gibbs free barrier of OMC bonding at the acute step ([481¯] and [4¯41]) of 29.7/34.25 kcal/mol are lower than that of Mg[6(H2O)]2+ of 32.45/36.7 kcal/mol and the Gibbs free barrier of OMC bonding at the obtuse step ([481¯] and [4¯41]) of 42.07/47.6 kcal/mol are lower than that of Mg[6(H2O)]2+ of 55.4/60.34 kcal/mol. The enhancing effects of organic components and microbes on the precipitation of magnesium ions were collectively determined through experimental and theoretical calculation, thus setting up a new direction for future studies of dolomitization with a focus on microbial- mineral interactions.

6.
World J Microbiol Biotechnol ; 40(2): 57, 2024 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-38165509

RÉSUMÉ

Microbially induced manganese carbonate precipitation has been utilized for the treatment of wastewater containing manganese. In this study, Virgibacillus dokdonensis was used to remove manganese ions from an environment containing 5% NaCl. The results showed a significant decrease in carbonic anhydrase activity and concentrations of carbonate and bicarbonate ions with increasing manganese ion concentrations. However, the levels of humic acid analogues, polysaccharides, proteins, and DNA in EPS were significantly elevated compared to those in a manganese-free environment. The rhodochrosite exhibited a preferred growth orientation, abundant morphological features, organic elements including nitrogen, phosphorus, and sulfur, diverse protein secondary structures, as well as stable carbon isotopes displaying a stronger negative bias. The presence of manganese ions was found to enhance the levels of chemical bonds O-C=O and N-C=O in rhodochrosite. Additionally, manganese in rhodochrosite exhibited both + 2 and + 3 valence states. Rhodochrosite forms not only on the cell surface but also intracellularly. After being treated with free bacteria for 20 days, the removal efficiency of manganese ions ranged from 88.4 to 93.2%, and reached a remarkable 100% on the 10th day when using bacteria immobilized on activated carbon fiber that had been pre-cultured for three days. The removal efficiency of manganese ions was significantly enhanced under the action of pre-cultured immobilized bacteria compared to non-pre-cultured immobilized bacteria. This study contributes to a comprehensive understanding of the mineralization mechanism of rhodochrosite, thereby providing an economically and environmentally sustainable biological approach for treating wastewater containing manganese.


Sujet(s)
Biominéralisation , Manganèse , Eaux usées , Bactéries/génétique , Ions
7.
Chemosphere ; 341: 140043, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37660787

RÉSUMÉ

Due to the disorderly discharge in modern production and daily life of people, emerging contaminants(ECs) began to appear in landscape water, and have become a key public concern. Because of the unique characteristics of landscape water, it is difficult to efficiently remove ECs either by natural purification or by traditional large-scale sewage treatment facilities. The ideal purification method is to remove them while maintaining a beautiful environment. Possessing the feature of low-density, floating photocatalysts could harvest sufficient light on the surface of the water for photocatalytic degradation, which may be an important supplement for ECs treatment in landscape water. This paper gave a review related to floating photocatalysts and proposed an idea of combining floating photocatalysts to construct bionic photocatalytic materials for contaminative landscape water treatment. Six types of common floating substrates and corresponding applications for floating photocatalysts were concluded in this paper, and the main problem leading to the low efficiency of photocatalysts and three corresponding three improvement strategies were discussed. Besides, the modification mechanisms of photocatalysts were discussed thoroughly. On this basis, the engineering application prospects of bionic photocatalytic materials were proposed to remove ECs in landscape water.


Sujet(s)
Compléments alimentaires , Contamination de médicament , Humains , Eaux d'égout , Pollution de l'eau
8.
Front Microbiol ; 14: 1078430, 2023.
Article de Anglais | MEDLINE | ID: mdl-36778848

RÉSUMÉ

Bacteria can facilitate the increase of Mg2+ content in biotic aragonite, but the molecular mechanisms of the incorporation of Mg2+ ion into aragonite facilitated by bacteria are still unclear and the dolomitization of aragonite grains is rarely reported. In our laboratory experiments, the content of Mg2+ ions in biotic aragonite is higher than that in inorganically-precipitated aragonite and we hypothesize that the higher Mg content may enhance the subsequent dolomitization of aragonite. In this study, biotic aragonite was induced by Bacillus licheniformis Y1 at different Mg/Ca molar ratios. XRD data show that only aragonite was precipitated in the media with Mg/Ca molar ratios at 6, 9, and 12 after culturing for 25 days. The EDS and atomic absorption results show that the content of Mg2+ ions in biotic aragonite increased with rising Mg/Ca molar ratios. In addition, our analyses show that the EPS from the bacteria and the organics extracted from the interior of the biotic aragonite contain the same biomolecules, including Ala, Gly, Glu and hexadecanoic acid. The content of Mg2+ ions in the aragonite precipitates mediated by biomolecules is significantly higher than that in inorganically-precipitated aragonite. Additionally, compared with Ala and Gly, the increase of the Mg2+ ions content in aragonite promoted by Glu and hexadecanoic acid is more significant. The DFT (density functional theory) calculations reveal that the energy needed for Mg2+ ion incorporation into aragonite mediated by Glu, hexadecanoic acid, Gly and Ala increased gradually, but was lower than that without acidic biomolecules. The experiments also show that the Mg2+ ion content in the aragonite significantly increased with the increasing concentration of biomolecules. In a medium with high Mg2+ concentration and with bacteria, after 2 months, micron-sized dolomite rhombs were precipitated on the surfaces of the aragonite particles. This study may provide new insights into the important role played by biomolecules in the incorporation of the Mg2+ ions into aragonite. Moreover, these experiments may contribute towards our understanding of the dolomitization of aragonite in the presence of bacteria.

9.
Water Res ; 229: 119438, 2023 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-36470047

RÉSUMÉ

Much attention has been paid to Ca2+ ion removal by biomineralization due to the dangers of Ca2+ on industrial processes and human health. However, Ca2+ removal from hypersaline water by biomineralization is quite difficult due to there being few halophilic bacteria tolerating higher salinities. In this study, free and immobilized Virgibacillus massiliensis C halophilic bacteria exhibiting carbonic anhydrase activity were used to remove Ca2+ ions from water at different NaCl concentrations. With increasing NaCl concentrations (10, 50, 100, 150 and 200 g/L), Ca2+ ion concentrations in the presence of free bacteria and in two groups of immobilized bacteria for a period of 6 days sharply decreased from 1200 mg/L to 219-562 mg/L, 71-214 mg/L and 21-159 mg/L, respectively; Ca2+ precipitation ratios were 55%-81%, 82%-94% and 87%-98%, respectively. The humic acid-like substances, protein, DNA and polysaccharide, released by the bacteria, promoted the Ca2+ ion removal. The immobilized bacteria were able to be recycled and precultured, which would save industry costs and increase Ca2+ ion removal efficiency. Biological processes for Ca2+ ion removal include cell surface, intracellular and extracellular biomineralization. The biogenesis of calcium carbonate was proved by SEM-EDS, FTIR, XPS and stable carbon isotope values. This study provides insights into the effective removal of Ca2+ ions by biomineralization in hypersaline water.


Sujet(s)
Calcium , Chlorure de sodium , Humains , Bactéries , Eau , Ions
10.
ACS Omega ; 7(34): 29755-29772, 2022 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-36061657

RÉSUMÉ

In microbial mineralization experiments, the induction time of mineral precipitation is ambiguous, and this may lead to difficulties in reproducing and confirming the test results. To explore the link between induction time and microbially mediated carbonate precipitation, we report here the mineralogy and morphology of carbonate precipitates induced by the halophilic Halomonas utahensis WMS2 bacterium in media with various Mg/Ca molar ratios over a range of induction times. The results show that the biominerals are formed in an alkaline environment affected by ammonia secreted by H. utahensis WMS2 bacteria. The content of dissolved inorganic carbon increased as a result of carbonic anhydrase catalyzing the hydration of carbon dioxide to release bicarbonate and carbonate ions. The X-ray diffraction (XRD) results show that the phase of mineral precipitated gradually changes from an unstable Mg-rich calcite to metastable monohydrocalcite and then to stable hydromagnesite with an increase in the Mg2+ ion concentration and induction time. The scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) results show that minerals mostly change from single particles/crystallites to aggregations under the action of the microorganisms at different Mg2+ ion concentrations and induction times. Our experiments demonstrate that the carbonate minerals produced in the presence of microbes change significantly with the induction time, in addition to the influence of the hydrochemical factors; this indicates that the induction time is significant in determining the mineralogy of biominerals.

11.
J Environ Sci (China) ; 122: 184-200, 2022 Dec.
Article de Anglais | MEDLINE | ID: mdl-35717084

RÉSUMÉ

Biomineralization has become a research focus in wastewater treatment due to its much lower costs compared to traditional methods. However, the low sodium chloride (NaCl)-tolerance of bacteria limits applications to only water with low NaCl concentrations. Here, calcium ions in hypersaline wastewater (10% NaCl) were precipitated by free and immobilized Halovibrio mesolongii HMY2 bacteria and the differences between them were determined. The results show that calcium ions can be transformed into several types of calcium carbonate with a range of morphologies, abundant organic functional groups (C-H, C-O-C, C=O, etc), protein secondary structures (ß-sheet, α-helix, 310 helix, and ß-turn), P=O and S-H indicated by P2p and S2p, and more negative δ13CPDB (‰) values (-16.8‰ to -18.4‰). The optimal conditions for the immobilized bacteria were determined by doing experiments with six factors and five levels and using response surface method. Under the action of two groups of immobilized bacteria prepared under the optimal conditions, by the 10th day, Ca2+ ion precipitation ratios had increased to 79%-89% and 80%-88% with changes in magnesium ion cencentrations. Magnesium ions can significantly inhibit the calcium ion precipitation, and this inhibitory effect can be decreased under the action of immobilized bacteria. Minerals induced by immobilized bacteria always aggregated together, had higher contents of Mg, P, and S, lower stable carbon isotope values and less well-developed protein secondary structures. This study demonstrates an economic and eco-friendly method for recycling calcium ions in hypersaline wastewater, providing an easy step in the process of desalination.


Sujet(s)
Calcium , Magnésium , Carbonate de calcium/composition chimique , Halomonadaceae , Ions , Magnésium/métabolisme , Chlorure de sodium , Eaux usées
12.
Front Microbiol ; 13: 821968, 2022.
Article de Anglais | MEDLINE | ID: mdl-35450281

RÉSUMÉ

Bacterial activities have been demonstrated as critical for protodolomite precipitation in specific aqueous conditions, whereas the relationship between the various hydrochemical factors and bacterial activity has not been fully explored. In this study, biomineralization experiments were conducted using a newly isolated extreme halophilic bacterium from salina mud, Vibrio harveyi QPL2, under various Mg/Ca molar ratios (0, 3, 6, 10, and 12) and a salinity of 200‰. The mineral phases, elemental composition, morphology, and crystal lattice structure of the precipitates were analyzed by XRD, SEM, and HRTEM, respectively. The organic weight and functional groups in the biominerals were identified by TG-DSC, FTIR, and XPS analysis. The amounts of amino acids and polysaccharides in the EPS of QPL2 cultured at various Mg/Ca molar ratios were quantified by an amino acid analyzer and high-performance liquid chromatography. The results confirm that disordered stoichiometric protodolomite was successfully precipitated through the activities of bacteria in a medium with relatively high Mg/Ca molar ratios (10 and 12) but it was not identified in cultures with lower Mg/Ca molar ratios (0, 3, and 6). That bacterial activity is critical for protodolomite formation as shown by the significant bacterial relicts identified in the precipitated spherulite crystals, including pinhole structures, a mineral coating around cells, and high organic matter content within the crystals. It was also confirmed that the high Mg/Ca molar ratio affects the composition of the organic components in the bacterial EPS, leading to the precipitation of the protodolomite. Specifically, not only the total EPS amount, but also other facilitators including the acidic amino acids (Glu and Asp) and polysaccharides in the EPS, increased significantly under the high Mg/Ca molar ratios. Combined with previous studies, the present findings suggest a clear link between high Mg/Ca molar ratios and the formation of protodolomite through halophilic bacterial activity.

13.
Chemosphere ; 298: 134328, 2022 Jul.
Article de Anglais | MEDLINE | ID: mdl-35304210

RÉSUMÉ

Calcium ions in industrial wastewater needs to be removed to prevent the production of limescale, which can have negative consequences. Biomineralization has become the focus due to its lower costs than traditional methods of remediation. In this study, calcium ions were bio-precipitated under the action of free and immobilized Bacillus amyloliquefaciens DMS6 bacteria, and the calcium ion removal efficiency was also compared. The results show that it only needed 3 days to decrease the calcium ion concentration to an ideal level of 76-116 mg/L under the action of DMS6 bacteria immobilized by activated carbon fiber, with calcium ion removal ratios reaching 99%-95% by the 7th day. DMS6 bacteria immobilized by activated carbon fiber were superior to free bacteria and bacteria immobilized by sodium alginate in calcium ion removal. Calcium ions are biomineralized into calcite, Mg-rich calcite, aragonite and monohydrocalcite with abundant organic functional groups, 4 types of secondary protein structures, amino acids, phospholipids, negative stable carbon isotope δ13CPDB values (-16.68‰ to-17.25‰) and negatively charged biomineral surface. Calcium ions were diffused into cells and took part in the intracellular biomineralization of monohydrocalcite, also facilitating calcium ion removal. The formation of intracellular monohydrocalcite has rarely been reported. This study demonstrates an economic and environmentally friendly method to remove calcium ions from industrial wastewater.


Sujet(s)
Bacillus amyloliquefaciens , Bacillus , Bacillus/métabolisme , Bactéries , Calcium/métabolisme , Carbonate de calcium/métabolisme , Charbon de bois/métabolisme , Ions/métabolisme , Eaux usées
14.
Front Microbiol ; 12: 696557, 2021.
Article de Anglais | MEDLINE | ID: mdl-34394038

RÉSUMÉ

The morphology, crystal structure, and elemental composition of biominerals are commonly different from chemically synthesized minerals, but the reasons for these are not fully understood. A facultative anaerobic bacterium, Enterobacter ludwigii SYB1, is used in experiments to document the hydrochemistry, mineral crystallization, and cell surface characteristics of biomineralization. It was found that carbonate anhydrase and ammonia production were major factors influencing the alkalinity and saturation of the closed biosystem. X-ray diffraction (XRD) spectra showed that calcite, monohydrocalcite (MHC), and dypingite formed in samples with bacterial cells. It was also found that the (222) plane of MHC was the preferred orientation compared to standard data. Scanning transmission electron microscopy (STEM) analysis of cell slices provides direct evidence of concentrated calcium and magnesium ions on the surface of extracellular polymeric substances (EPS). In addition, high-resolution transmission electron microscopy (HRTEM) showed that crystallized nanoparticles were formed within the EPS. Thus, the mechanism of the biomineralization induced by E. ludwigii SYB1 can be divided into three stages: (i) the production of carbonate anhydrase and ammonia increases the alkalinity and saturation state of the milieu, (ii) free calcium and magnesium ions are adsorbed and chelated onto EPS, and (iii) nanominerals crystallize and grow within the EPS. Seventeen kinds of amino acids were identified within both biotic MHC and the EPS of SYB1, while the percentages of glutamic and aspartic acid in MHC increased significantly (p < 0.05). Furthermore, the adsorption energy was calculated for various amino acids on seven diffracted crystal faces, with preferential adsorption demonstrated on (111) and (222) faces. At the same time, the lowest adsorption energy was always that of glutamic and aspartic acid for the same crystal plane. These results suggest that aspartic and glutamic acid always mix preferentially in the crystal lattice of MHC and that differential adsorption of amino acids on crystal planes can lead to their preferred orientation. Moreover, the mixing of amino acids in the mineral structure may also have a certain influence on the mineral lattice dislocations, thus enhancing the thermodynamic characteristics.

15.
World J Microbiol Biotechnol ; 29(10): 1801-11, 2013 Oct.
Article de Anglais | MEDLINE | ID: mdl-23543209

RÉSUMÉ

Calcite with laminate structure was successfully prepared by culturing Synechocystis sp. PCC6803 with different concentrations of calcium chloride (CaCl2) in BG11 media. S. PCC6803 was examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser confocal scanning microscope (LCSM) and energy dispersive spectroscopy (EDS). The effects of Ca²âº concentrations and pH values on calcification were investigated and the micro morphs of the CaCO3 crystals were observed by means of SEM. These results showed that CaCO3 crystals could be more easily formed with increasing the concentration of CaCl2 in S. PCC6803 culture solution. S. PCC6803 could largely bind calcium ions, most of which were present in extracellular polymeric substances and on the cell wall. Inside the cells there were a lot of circular areas rich in calcium ions without the crystallization of calcium. Some cells produced a thicker gelatinous sheath outside of the translucent organic thin layer. And the cells inside also produced major changes that the original chloroplasts were almost transformed into starch grains whose sizes were from 0.5 to 1 µm with relatively uniform in sizes. At the same time the cell sizes significantly reduced to only about 8-9 µm almost changing to half of its original diameters. The calcite crystals with a highly preferred orientation induced by S. PCC6803 were observed with X-ray diffraction (XRD). A critical implication was that S. PCC6803 could induce bio-calcification and then mediate the further growth of CaCO3 crystals in the biological system.


Sujet(s)
Carbonate de calcium/composition chimique , Carbonate de calcium/métabolisme , Chlorure de calcium/métabolisme , Synechocystis/métabolisme , Précipitation chimique , Cristallisation , Milieux de culture/composition chimique , Concentration en ions d'hydrogène , Microscopie confocale , Microscopie électronique à balayage , Microscopie électronique à transmission , Spectrométrie d'émission X , Synechocystis/ultrastructure , Diffraction des rayons X
16.
Nat Commun ; 2: 442, 2011 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-21863009

RÉSUMÉ

Palaeontological data of extinct groups often sheds light on the evolutionary sequences leading to extant groups, but has failed to resolve the basal metazoan phylogeny including the origin of the Cnidaria. Here we report the occurrence of a stem-group cnidarian, Cambroctoconus orientalis gen. et sp. nov., from the mid-Cambrian of China, which is a colonial organism with calcareous octagonal conical cup-shaped skeletons. It bears cnidarian features including longitudinal septa arranged in octoradial symmetry and colonial occurrence, but lacks a jelly-like mesenchyme. Such morphological characteristics suggest that the colonial occurrence with polyps of octoradial symmetry is the plesiomorphic condition of the Cnidaria and appeared earlier than the jelly-like mesenchyme during the course of evolution.


Sujet(s)
Évolution biologique , Cnidaria/classification , Phylogenèse , Animaux , Chine , Cnidaria/anatomie et histologie , Cnidaria/composition chimique , Cnidaria/génétique , Fossiles
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE