Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
bioRxiv ; 2024 Aug 17.
Article de Anglais | MEDLINE | ID: mdl-39185156

RÉSUMÉ

Identifying the key molecular pathways that enable metastasis by analyzing the eventual metastatic tumor is challenging because the state of the founder subclone likely changes following metastatic colonization. To address this challenge, we labeled primary mouse pancreatic ductal adenocarcinoma (PDAC) subclones with DNA barcodes to characterize their pre-metastatic state using ATAC-seq and RNA-seq and determine their relative in vivo metastatic potential prospectively. We identified a gene signature separating metastasis-high and metastasis-low subclones orthogonal to the normal-to-PDAC and classical-to-basal axes. The metastasis-high subclones feature activation of IL-1 pathway genes and high NF-κB and Zeb/Snail family activity and the metastasis-low subclones feature activation of neuroendocrine, motility, and Wnt pathway genes and high CDX2 and HOXA13 activity. In a functional screen, we validated novel mediators of PDAC metastasis in the IL-1 pathway, including the NF-κB targets Fos and Il23a, and beyond the IL-1 pathway including Myo1b and Tmem40. We scored human PDAC tumors for our signature of metastatic potential from mouse and found that metastases have higher scores than primary tumors. Moreover, primary tumors with higher scores are associated with worse prognosis. We also found that our metastatic potential signature is enriched in other human carcinomas, suggesting that it is conserved across epithelial malignancies. This work establishes a strategy for linking cancer cell state to future behavior, reveals novel functional regulators of PDAC metastasis, and establishes a method for scoring human carcinomas based on metastatic potential.

2.
Cancer Discov ; 6(3): 247-55, 2016 Mar.
Article de Anglais | MEDLINE | ID: mdl-26715643

RÉSUMÉ

UNLABELLED: A salient feature of pancreatic ductal adenocarcinoma (PDAC) is an abundant fibroinflammatory response characterized by the recruitment of immune and mesenchymal cells and the consequent establishment of a protumorigenic microenvironment. Here, we report the prominent presence of B cells in human pancreatic intraepithelial neoplasia and PDAC lesions as well as in oncogenic Kras-driven pancreatic neoplasms in the mouse. The growth of orthotopic pancreatic neoplasms harboring oncogenic Kras was significantly compromised in B-cell-deficient mice (µMT), and this growth deficiency could be rescued by the reconstitution of a CD1d(hi)CD5(+) B-cell subset. The protumorigenic effect of B cells was mediated by their expression of IL35 through a mechanism involving IL35-mediated stimulation of tumor cell proliferation. Our results identify a previously unrecognized role for IL35-producing CD1d(hi)CD5(+) B cells in the pathogenesis of pancreatic cancer and underscore the potential significance of a B-cell/IL35 axis as a therapeutic target. SIGNIFICANCE: This study identifies a B-cell subpopulation that accumulates in the pancreatic parenchyma during early neoplasia and is required to support tumor cell growth. Our findings provide a rationale for exploring B-cell-based targeting approaches for the treatment of pancreatic cancer.


Sujet(s)
Lymphocytes B/immunologie , Lymphocytes B/métabolisme , Transformation cellulaire néoplasique/immunologie , Transformation cellulaire néoplasique/métabolisme , Interleukines/biosynthèse , Tumeurs du pancréas/immunologie , Tumeurs du pancréas/métabolisme , Animaux , Marqueurs biologiques , Carcinome du canal pancréatique , Modèles animaux de maladie humaine , Humains , Immunohistochimie , Lymphocytes TIL/immunologie , Lymphocytes TIL/métabolisme , Souris , Souris knockout , Tumeurs du pancréas/anatomopathologie , Phénotype , Tumeurs du pancréas
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE