Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nanoscale ; 4(10): 3228-36, 2012 May 21.
Article de Anglais | MEDLINE | ID: mdl-22481430

RÉSUMÉ

Extending the resolution and spatial proximity of lithographic patterning below critical dimensions of 20 nm remains a key challenge with very-large-scale integration, especially if the persistent scaling of silicon electronic devices is sustained. One approach, which relies upon the directed self-assembly of block copolymers by chemical-epitaxy, is capable of achieving high density 1 : 1 patterning with critical dimensions approaching 5 nm. Herein, we outline an integration-favourable strategy for fabricating high areal density arrays of aligned silicon nanowires by directed self-assembly of a PS-b-PMMA block copolymer nanopatterns with a L(0) (pitch) of 42 nm, on chemically pre-patterned surfaces. Parallel arrays (5 × 10(6) wires per cm) of uni-directional and isolated silicon nanowires on insulator substrates with critical dimension ranging from 15 to 19 nm were fabricated by using precision plasma etch processes; with each stage monitored by electron microscopy. This step-by-step approach provides detailed information on interfacial oxide formation at the device silicon layer, the polystyrene profile during plasma etching, final critical dimension uniformity and line edge roughness variation nanowire during processing. The resulting silicon-nanowire array devices exhibit Schottky-type behaviour and a clear field-effect. The measured values for resistivity and specific contact resistance were ((2.6 ± 1.2) × 10(5)Ωcm) and ((240 ± 80) Ωcm(2)) respectively. These values are typical for intrinsic (un-doped) silicon when contacted by high work function metal albeit counterintuitive as the resistivity of the starting wafer (∼10 Ωcm) is 4 orders of magnitude lower. In essence, the nanowires are so small and consist of so few atoms, that statistically, at the original doping level each nanowire contains less than a single dopant atom and consequently exhibits the electrical behaviour of the un-doped host material. Moreover this indicates that the processing successfully avoided unintentional doping. Therefore our approach permits tuning of the device steps to contact the nanowires functionality through careful selection of the initial bulk starting material and/or by means of post processing steps e.g. thermal annealing of metal contacts to produce high performance devices. We envision that such a controllable process, combined with the precision patterning of the aligned block copolymer nanopatterns, could prolong the scaling of nanoelectronics and potentially enable the fabrication of dense, parallel arrays of multi-gate field effect transistors.

3.
ACS Nano ; 3(1): 131-8, 2009 Jan 27.
Article de Anglais | MEDLINE | ID: mdl-19206259

RÉSUMÉ

We have measured the dynamic alignment properties of single-walled carbon nanotube (SWNT) suspensions in pulsed high magnetic fields through linear dichroism spectroscopy. Millisecond-duration pulsed high magnetic fields up to 56 T as well as microsecond-duration pulsed ultrahigh magnetic fields up to 166 T were used. Because of their anisotropic magnetic properties, SWNTs align in an applied magnetic field, and because of their anisotropic optical properties, aligned SWNTs show linear dichroism. The characteristics of their overall alignment depend on several factors, including the viscosity and temperature of the suspending solvent, the degree of anisotropy of nanotube magnetic susceptibilities, the nanotube length distribution, the degree of nanotube bundling, and the strength and duration of the applied magnetic field. To explain our data, we have developed a theoretical model based on the Smoluchowski equation for rigid rods that accurately reproduces the salient features of the experimental data.


Sujet(s)
Carbone/composition chimique , Nanotechnologie/méthodes , Nanotubes de carbone/composition chimique , Algorithmes , Anisotropie , Champs électromagnétiques , Lumière , Microscopie à force atomique , Modèles statistiques , Nanoparticules/composition chimique , Nanotubes/composition chimique , Rhéologie , Analyse spectrale , Propriétés de surface , Facteurs temps
4.
Nano Lett ; 8(6): 1700-3, 2008 Jun.
Article de Anglais | MEDLINE | ID: mdl-18494531

RÉSUMÉ

The two-terminal magnetotransport of a single graphene layer was investigated up to a field of 55 T. The dependence of the electron transmission probability at the organo-metallic interface between the graphene and the metal electrodes was studied as a function of filling factor and electron density. A resistance-plateau spanning several tens of tesla width was observed. We argue that this plateau originates from an augmented sublattice spin-splitting due to the high surface-impurity concentration of the graphene layer. At electron densities close to the Dirac point, fingerprints of a thermally activated energy gap were observed.


Sujet(s)
Graphite/composition chimique , Métaux/composition chimique , Microélectrodes , Impédance électrique , Champs électromagnétiques , Électrons , Graphite/effets des radiations , Métaux/effets des radiations
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...