Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Eur J Med Chem ; 264: 115997, 2024 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-38056303

RÉSUMÉ

The suppression of ferroptosis is emerging as a promising therapeutic strategy for effectively treating a wide range of diseases, including neurodegenerative disorders, organ ischemia-reperfusion injury, and inflammatory conditions. However, the clinical utility of ferroptosis inhibitors is significantly impeded by the limited availability of rational drug designs. In our previous study, we successfully unraveled the efficacy of ferrostatin-1 (Fer-1) attributed to the synergistic effect of its ortho-diamine (-NH) moiety. In this study, we present the discovery of the ortho-hydroxyl-amino moiety as a novel scaffold for ferroptosis inhibitors, employing quantum chemistry as well as in vitro and in vivo assays. 2-amino-6-methylphenol derivatives demonstrated remarkable inhibition of RSL3-induced ferroptosis, exhibiting EC50 values ranging from 25 nM to 207 nM. These compounds do not appear to modulate iron homeostasis or lipid reactive oxygen species (ROS) generation pathways. Nevertheless, they effectively prevent the accumulation of lipid peroxides in living cells. Furthermore, compound 13 exhibits good in vivo activities as it effectively protect mice from kidney ischemia-reperfusion injury. In summary, compound 13 has been identified as a potent ferroptosis inhibitor, warranting further investigation as a promising lead compound.


Sujet(s)
Peroxydes lipidiques , Lésion d'ischémie-reperfusion , Animaux , Souris , Peroxydation lipidique , Peroxydes lipidiques/métabolisme , Espèces réactives de l'oxygène/métabolisme , Lésion d'ischémie-reperfusion/traitement médicamenteux , Phénols/pharmacologie
2.
Biofactors ; 50(2): 266-293, 2024.
Article de Anglais | MEDLINE | ID: mdl-38059412

RÉSUMÉ

Ferroptosis is a new form of regulated cell death caused by iron-dependent accumulation of lethal polyunsaturated phospholipids peroxidation. It has received considerable attention owing to its putative involvement in a wide range of pathophysiological processes such as organ injury, cardiac ischemia/reperfusion, degenerative disease and its prevalence in plants, invertebrates, yeasts, bacteria, and archaea. To counter ferroptosis, living organisms have evolved a myriad of intrinsic efficient defense systems, such as cyst(e)ine-glutathione-glutathione peroxidase 4 system (cyst(e)ine-GPX4 system), guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin (BH4) system (GCH1/BH4 system), ferroptosis suppressor protein 1/coenzyme Q10 system (FSP1/CoQ10 system), and so forth. Among these, GPX4 serves as the only enzymatic protection system through the reduction of lipid hydroperoxides, while other defense systems ultimately rely on small compounds to scavenge lipid radicals and prevent ferroptotic cell death. In this article, we systematically summarize the chemical biology of lipid radical trapping process by endogenous chemicals, such as coenzyme Q10 (CoQ10), BH4, hydropersulfides, vitamin K, vitamin E, 7-dehydrocholesterol, with the aim of guiding the discovery of novel ferroptosis inhibitors.


Sujet(s)
Kystes , Ubiquinones , Humains , Ubiquinones/métabolisme , Peroxydation lipidique , Mort cellulaire , Peroxydes lipidiques/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...