Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 143
Filtrer
1.
Nat Med ; 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38961224

RÉSUMÉ

The African continent is poised to have a pivotal role in the global population landscape, with the United Nations projecting a population of 2.5 billion (more than 25% of the global population) by 2050. Amid this demographic shift, Africa faces a unique healthcare challenge-navigating a complex landscape of infectious and non-communicable diseases. This necessitates a departure from the conventional 'one-size-fits-all' medical model toward precision approaches that are efficient and sustainable. Genomic capacity is a pillar of precision health; however, access to up-to-date genetic testing in African countries is limited, compounded by a startling lack of representation of data from populations of African descent in gene discovery studies. In this Review, we delve into the challenges impeding the development of genomic capacity in Africa, such as the lack of electronic clinical and epidemiological records, infrastructural challenges, high supply chain costs and the 'dependency trap' that jeopardizes long-term sustainability. We emphasize the need for strategies hinged on true partnerships, robust infrastructure, workforce development and well-crafted policies. Finally, we outline recent progress and existing initiatives that should be considered as role models for future capacity-building initiatives.

2.
medRxiv ; 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38947052

RÉSUMÉ

Five years before the 2022-2023 global mpox outbreak Nigeria reported its first cases in nearly 40 years, with the ongoing epidemic since driven by sustained human-to-human transmission. However, limited genomic data has left questions about the timing and origin of the mpox virus' (MPXV) emergence. Here we generated 112 MPXV genomes from Nigeria from 2021-2023. We identify the closest zoonotic outgroup to the human epidemic in southern Nigeria, and estimate that the lineage transmitting from human-to-human emerged around July 2014, circulating cryptically until detected in September 2017. The epidemic originated in Southern Nigeria, particularly Rivers State, which also acted as a persistent and dominant source of viral dissemination to other states. We show that APOBEC3 activity increased MPXV's evolutionary rate twenty-fold during human-to-human transmission. We also show how Delphy, a tool for near-real-time Bayesian phylogenetics, can aid rapid outbreak analytics. Our study sheds light on MPXV's establishment in West Africa before the 2022-2023 global outbreak and highlights the need for improved pathogen surveillance and response.

4.
Microorganisms ; 12(3)2024 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-38543556

RÉSUMÉ

Antimicrobial resistance (AMR) is responsible for the spread and persistence of bacterial infections. Surveillance of AMR in healthy individuals is usually not considered, though these individuals serve as reservoirs for continuous disease transmission. Therefore, it is essential to conduct epidemiological surveillance of AMR in healthy individuals to fully understand the dynamics of AMR transmission in Nigeria. Thirteen multidrug-resistant Citrobacter spp., Enterobacter spp., Klebsiella pneumoniae, and Escherichia coli isolated from stool samples of healthy children were subjected to whole genome sequencing (WGS) using Illumina and Oxford nanopore sequencing platforms. A bioinformatics analysis revealed antimicrobial resistance genes such as the pmrB_Y358N gene responsible for colistin resistance detected in E. coli ST219, virulence genes such as senB, and ybtP&Q, and plasmids in the isolates sequenced. All isolates harbored more than three plasmid replicons of either the Col and/or Inc type. Plasmid reconstruction revealed an integrated tetA gene, a toxin production caa gene in two E. coli isolates, and a cusC gene in K. quasivariicola ST3879, which induces neonatal meningitis. The global spread of AMR pathogenic enteric bacteria is of concern, and surveillance should be extended to healthy individuals, especially children. WGS for epidemiological surveillance will improve the detection of AMR pathogens for management and control.

5.
Sci Rep ; 14(1): 6899, 2024 03 22.
Article de Anglais | MEDLINE | ID: mdl-38519524

RÉSUMÉ

Bats are not only ecologically valuable mammals but also reservoirs of zoonotic pathogens. Their vast population, ability to fly, and inhabit diverse ecological niches could play some role in the spread of antibiotic resistance. This study investigated non-aureus staphylococci and Mammaliicoccus colonization in the Hipposideros bats at Obafemi Awolowo University, Ile-Ife, Nigeria. Pharyngeal samples (n = 23) of the insectivorous bats were analyzed, and the presumptive non-aureus staphylococcal and Mammaliicoccus isolates were confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The isolates were characterized based on antibiotic susceptibility testing and whole-genome sequencing (WGS). Six bacterial genomes were assembled, and three species were identified, including Mammaliicoccus sciuri (n = 4), Staphylococcus gallinarum (n = 1), and Staphylococcus nepalensis (n = 1). All the isolates were resistant to clindamycin, while the M. sciuri and S. gallinarum isolates were also resistant to fusidic acid. WGS analysis revealed that the M. sciuri and S. gallinarum isolates were mecA-positive. In addition, the M. sciuri isolates possessed some virulence (icaA, icaB, icaC, and sspA) genes. Multi-locus sequence typing identified two new M. sciuri sequence types (STs) 233 and ST234. The identification of these new STs in a migratory mammal deserves close monitoring because previously known ST57, ST60, and ST65 sharing ack (8), ftsZ (13), glpK (14), gmk (6), and tpiA (10) alleles with ST233 and ST234 have been linked to mastitis in animals. Moreover, the broad host range of M. sciuri could facilitate the dispersal of antibiotic resistance genes. This study provides evidence of the importance of including migratory animals in monitoring the development and spread of antibiotic resistance.


Sujet(s)
Chiroptera , Infections à staphylocoques , Humains , Animaux , Femelle , Typage par séquençage multilocus , Nigeria , Antibactériens/pharmacologie , Génome bactérien , Infections à staphylocoques/microbiologie , Tests de sensibilité microbienne
7.
bioRxiv ; 2024 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-38293180

RÉSUMÉ

Background: Since its reemergence in 2017, yellow fever (YF) has been active in Nigeria. The Nigeria Centre for Disease Control (NCDC) has coordinated responses to the outbreaks with the support of the World Health Organization (WHO). The National Arbovirus and Vectors Research Centre (NAVRC) handles the vector component of these responses. This study sought to identify the vectors driving YF transmission and any of the targeted arboviruses and their distribution across states. Methods: Eggs, larvae and pupae as well as adult mosquitoes were collected in observational, analytical, and cross-sectional surveys conducted in sixteen YF outbreak states between 2017 and 2020. Adult mosquitoes (field-collected or reared from immature stages) were morphologically identified, and arboviruses were detected using RT-qPCR at the African Centre of Excellence for Genomics of Infectious Diseases (ACEGID). Results: Aedes mosquitoes were collected in eleven of the sixteen states surveyed and the mosquitoes in nine states were found infected with arboviruses. A total of seven Aedes species were collected from different parts of the country. Aedes aegypti was the most dominant (51%) species, whereas Aedes africanus was the least (0.2%). Yellow fever virus (YFV) was discovered in 33 (~26%) out of the 127 Aedes mosquito pools. In addition to YFV, the Chikungunya virus (CHIKV) was found in nine pools. Except for Ae. africanus, all the Aedes species tested positive for at least one arbovirus. YFV-positive pools were found in six (6) Aedes species while CHIKV-positive pools were only recorded in two Aedes species. Edo State had the most positive pools (16), while Nasarawa, Imo, and Anambra states had the least (1 positive pool). Breteau and house indices were higher than normal transmission thresholds in all but one state. Conclusion: In Nigeria, there is a substantial risk of arbovirus transmission by Aedes mosquitoes, with YFV posing the largest threat at the moment. This risk is heightened by the fact that YFV and CHIKV have been detected in vectors across outbreak locations. Hence, there is an urgent need to step up arbovirus surveillance and control activities in the country.

8.
Emerg Microbes Infect ; 13(1): 2307511, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-38240324

RÉSUMÉ

Dengue is often misclassified and underreported in Africa due to inaccurate differential diagnoses of nonspecific febrile illnesses such as malaria, sparsity of diagnostic testing and poor clinical and genomic surveillance. There are limited reports on the seroprevalence and genetic diversity of dengue virus (DENV) in humans and vectors in Nigeria. In this study, we investigated the epidemiology and genetic diversity of dengue in the rainforest region of Nigeria. We screened 515 febrile patients who tested negative for malaria and typhoid fever in three hospitals in Oyo and Ekiti States in southern Nigeria with a combination of anti-dengue IgG/IgM/NS1 rapid test kits and metagenomic sequencing. We found that approximately 28% of screened patients had previous DENV exposure, with the highest prevalence in persons over sixty. Approximately 8% of the patients showed evidence of recent or current infection, and 2.7% had acute infection. Following sequencing of sixty samples, we assembled twenty DENV-1 genomes (3 complete and 17 partial). We found that all assembled genomes belonged to DENV-1 genotype III. Our phylogenetic analyses showed evidence of prolonged cryptic circulation of divergent DENV lineages in Oyo state. We were unable to resolve the source of DENV in Nigeria owing to limited sequencing data from the region. However, our sequences clustered closely with sequences in Tanzania and sequences reported in Chinese with travel history to Tanzania in 2019. This may reflect the wider unsampled bidirectional transmission of DENV-1 in Africa, which strongly emphasizes the importance of genomic surveillance in monitoring ongoing DENV transmission in Africa.


Sujet(s)
Virus de la dengue , Dengue , Paludisme , Humains , Virus de la dengue/génétique , Nigeria/épidémiologie , Forêt pluviale , Études séroépidémiologiques , Phylogenèse , Études transversales , Paludisme/épidémiologie , Séquençage du génome entier
9.
Emerg Microbes Infect ; 13(1): 2294859, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-38088796

RÉSUMÉ

Identification of the diverse animal hosts responsible for spill-over events from animals to humans is crucial for comprehending the transmission patterns of emerging infectious diseases, which pose significant public health risks. To better characterize potential animal hosts of Lassa virus (LASV), we assessed domestic and non-domestic animals from 2021-2022 in four locations in southern Nigeria with reported cases of Lassa fever (LF). Birds, lizards, and domestic mammals (dogs, pigs, cattle and goats) were screened using RT-qPCR, and whole genome sequencing was performed for lineage identification on selected LASV positive samples. Animals were also screened for exposure to LASV by enzyme-linked immunosorbent assay (ELISA). Among these animals, lizards had the highest positivity rate by PCR. Genomic sequencing of samples in most infected animals showed sub-lineage 2 g of LASV. Seropositivity was highest among cattle and lowest in pigs. Though the specific impact these additional hosts may have in the broader virus-host context are still unknown - specifically relating to pathogen diversity, evolution, and transmission - the detection of LASV in non-rodent hosts living in proximity to confirmed human LF cases suggests their involvement during transmission as potential reservoirs. Additional epidemiological data comparing viral genomes from humans and animals, as well as those circulating within the environment will be critical in understanding LASV transmission dynamics and will ultimately guide the development of countermeasures for this zoonotic health threat.


Sujet(s)
Fièvre de Lassa , Virus de Lassa , Humains , Animaux , Bovins , Chiens , Suidae , Virus de Lassa/génétique , Fièvre de Lassa/épidémiologie , Fièvre de Lassa/médecine vétérinaire , Fièvre de Lassa/génétique , Nigeria/épidémiologie , Génome viral , Santé publique , Mammifères
11.
Viruses ; 15(11)2023 Oct 31.
Article de Anglais | MEDLINE | ID: mdl-38005866

RÉSUMÉ

Several mutations in the surface (S), basal core promoter (BCP), and precore (PC) genes of the hepatitis B virus have been linked to inaccurate diagnosis and the development of immune escape mutants (IEMs) of the infection, which can lead to chronic infection. Understanding the prevalence and spread of these mutations is critical in the global effort to eliminate HBV. Blood samples were collected from 410 people in Osun and Ekiti states, southwest Nigeria, between 2019 and 2021. Participants were drawn from a group of asymptomatic people who were either blood donors, outpatients, or antenatal patients with no record of HBV infection at the medical outpatients' unit of the hospital. DNA was extracted from plasma using a Qiagen DNEasy kit, followed by nested PCR targeting HBV S and BCP/PC genes. The Sanger sequencing method was used to sequence the positive PCR amplicons, which were further analyzed for IEMs, BCP, and PC mutations. HBV-DNA was detected in 12.4% (51/410) of individuals. After DNA amplification and purification, 47.1% (24) of the S gene and 76.5% (39) of the BCP/PC gene amplicons were successfully sequenced. Phylogenetic analysis showed that all the HBV sequences obtained in this study were classified as HBV genotype E. Mutational analysis of the major hydrophilic region (MHR) and a-determinant domain of S gene sequences revealed the presence of three immune escape mutations: two samples harbored a T116N substitution, six samples had heterogenous D144A/N/S/H substitution, and one sample had a G145E substitution, respectively. The BCP/PC region analysis revealed a preponderance of major BCP mutants, with the prevalence of BCP double substitutions ranging from 38.5% (A1762T) to 43.6% (G1764A). Previously reported classical PC mutant variants were observed in high proportion, including G1896A (33.3%) and G1899A (12.8%) mutations. This study confirms the strong presence of HBV genotype E in Nigeria, the ongoing circulation of HBV IEMs, and a high prevalence of BCP/PC mutants in the cohorts. This has implications for diagnosis and vaccine efficacy for efficient management and control of HBV in the country.


Sujet(s)
Hépatite B chronique , Hépatite B , Grossesse , Humains , Femelle , Virus de l'hépatite B , Nigeria/épidémiologie , Phylogenèse , ADN viral/analyse , Mutation , Génotype , Hépatite B chronique/épidémiologie
12.
Nat Commun ; 14(1): 4693, 2023 08 04.
Article de Anglais | MEDLINE | ID: mdl-37542071

RÉSUMÉ

Effective infectious disease surveillance in high-risk regions is critical for clinical care and pandemic preemption; however, few clinical diagnostics are available for the wide range of potential human pathogens. Here, we conduct unbiased metagenomic sequencing of 593 samples from febrile Nigerian patients collected in three settings: i) population-level surveillance of individuals presenting with symptoms consistent with Lassa Fever (LF); ii) real-time investigations of outbreaks with suspected infectious etiologies; and iii) undiagnosed clinically challenging cases. We identify 13 distinct viruses, including the second and third documented cases of human blood-associated dicistrovirus, and a highly divergent, unclassified dicistrovirus that we name human blood-associated dicistrovirus 2. We show that pegivirus C is a common co-infection in individuals with LF and is associated with lower Lassa viral loads and favorable outcomes. We help uncover the causes of three outbreaks as yellow fever virus, monkeypox virus, and a noninfectious cause, the latter ultimately determined to be pesticide poisoning. We demonstrate that a local, Nigerian-driven metagenomics response to complex public health scenarios generates accurate, real-time differential diagnoses, yielding insights that inform policy.


Sujet(s)
Fièvre de Lassa , Virus , Humains , Nigeria/épidémiologie , Métagénomique , Fièvre de Lassa/diagnostic , Fièvre de Lassa/épidémiologie , Virus de Lassa/génétique , Virus/génétique
13.
bioRxiv ; 2023 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-37503211

RÉSUMÉ

Antimicrobial resistance (AMR) has been established to be a significant driver for the persistence and spread of bacterial infections. It is, therefore, essential to conduct epidemiological surveillance of AMR in healthy individuals to understand the actual dynamics of AMR in Nigeria. Multi-drug resistant Klebsiella quasivariicola (n=1), Enterobacter hormaechei (n=1), and Escherichia coli (n=3) from stool samples of healthy children were subjected to whole genome sequencing using Illumina Nextseq1000/2000 and Oxford nanopore. Bioinformatics analysis reveals antimicrobial resistance, virulence genes, and plasmids. This pathogenic enteric bacteria harbored more than three plasmid replicons of either Col and/or Inc type associated with outbreaks and AMR resistant gene pmrB responsible for colistin resistance. Plasmid reconstruction revealed an integrated tetA gene responsible for tetracycline resistance, and caa gene responsible for toxin production in two of the E.coli isolates, and a cusC gene known to induce neonatal meningitis in the K. quasivariicola ST3879. The global spread of MDR pathogenic enteric bacteria is a worrying phenomenon, and close surveillance of healthy individuals, especially children, is strongly recommended to prevent the continuous spread and achieve the elimination and eradication of these infections. Molecular epidemiological surveillance using whole genome sequencing (WGS) will improve the detection of MDR pathogens in Nigeria.

14.
Virus Res ; 334: 199174, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-37467933

RÉSUMÉ

Coronaviruses (CoVs) are responsible for sporadic, epidemic and pandemic respiratory diseases worldwide. Bats have been identified as the reservoir for CoVs. To increase the number of complete coronavirus genomes in Africa and to comprehend the molecular epidemiology of bat Alphacoronaviruses (AlphaCoVs), we used deep metagenomics shotgun sequencing to obtain three (3) near-complete genomes of AlphaCoVs from Mops condylurus (Angolan free-tailed) bat in Nigeria. Phylogenetic and pairwise identity analysis of open reading frame 1ab (ORF1ab), spike (S), envelope (E), membrane (M) and nucleocapsid (N) genes of AlphaCoV in this study to previously described AlphaCoVs subgenera showed that the Nigerian AlphaCoVs may be members of potentially unique AlphaCoV subgenera circulating exclusively in bats in the Molossidae bat family. Recombination events were detected, suggesting the evolution of AlphaCoVs within the Molossidae family. The pairwise identity of the S gene in this study and previously published S gene sequences of other AlphaCoVs indicate that the Nigerian strains may have a genetically unique spike protein that is distantly related to other AlphaCoVs. Variations involving non-polar to polar amino acid substitution in both the Heptad Repeat (HR) regions 1 and 2 were observed. Further monitoring of bats to understand the host receptor use requirements of CoVs and interspecies CoV transmission in Africa is necessary to identify and prevent the potential danger that bat CoVs pose to public health.


Sujet(s)
Alphacoronavirus , Chiroptera , Infections à coronavirus , Coronavirus , Animaux , Alphacoronavirus/génétique , Phylogenèse , Nigeria , Génome viral , Coronavirus/génétique , Infections à coronavirus/épidémiologie , Infections à coronavirus/médecine vétérinaire , Infections à coronavirus/génétique , Génomique
15.
Virulence ; 14(1): 2218076, 2023 12.
Article de Anglais | MEDLINE | ID: mdl-37262110

RÉSUMÉ

Hepatitis B virus (HBV) immune escape and Pol/RT mutations account for HBV immunoprophylactic, therapeutic, and diagnostic failure globally. Little is known about circulating HBV immune escape and Pol/RT mutants in Nigeria. This study focused on narrowing the knowledge gap of the pattern and prevalence of the HBV mutants across clinical cohorts of infected patients in southwestern Nigeria. Ninety-five enrollees were purposively recruited across clinical cohorts of HBV-infected patients with HBsAg or anti-HBc positive serological outcome and occult HBV infection. Total DNA was extracted from patients' sera. HBV S and Pol gene-specific nested PCR amplification was carried out. The amplicons were further sequenced for serotypic, genotypic, phylogenetic, and mutational analysis. HBV S and Pol genes were amplified in 60 (63.2%) and 19 (20%) of HBV isolates, respectively. All the sixty HBV S gene and 14 of 19 Pol gene sequences were exploitable. The ayw4 serotype was predominant (95%) while ayw1 serotype was identified in 5% of isolates. Genotype E predominates in 95% of sequences, while genotype A, sub-genotype A3 was observed in 5%. Prevalence of HBV IEMs in the "a" determinant region was 29%. Commonest HBV IEM was S113T followed by G145A and D144E. The Pol/RT mutations rtV214A and rtI163V among others were identified in this study. This study provided data on the occurrence of existing and new HBV IEMs and Pol gene mutations in Nigeria.


Sujet(s)
Hépatite B chronique , Hépatite B , Humains , Virus de l'hépatite B/génétique , Gènes pol , Phylogenèse , Nigeria/épidémiologie , Hépatite B chronique/traitement médicamenteux , Hépatite B/épidémiologie , Hépatite B/génétique , Mutation , Génotype , ADN viral/génétique
16.
Viruses ; 15(5)2023 05 17.
Article de Anglais | MEDLINE | ID: mdl-37243273

RÉSUMÉ

Since SARS-CoV-2 caused the COVID-19 pandemic, records have suggested the occurrence of reverse zoonosis of pets and farm animals in contact with SARS-CoV-2-positive humans in the Occident. However, there is little information on the spread of the virus among animals in contact with humans in Africa. Therefore, this study aimed to investigate the occurrence of SARS-CoV-2 in various animals in Nigeria. Overall, 791 animals from Ebonyi, Ogun, Ondo, and Oyo States, Nigeria were screened for SARS-CoV-2 using RT-qPCR (n = 364) and IgG ELISA (n = 654). SARS-CoV-2 positivity rates were 45.9% (RT-qPCR) and 1.4% (ELISA). SARS-CoV-2 RNA was detected in almost all animal taxa and sampling locations except Oyo State. SARS-CoV-2 IgGs were detected only in goats from Ebonyi and pigs from Ogun States. Overall, SARS-CoV-2 infectivity rates were higher in 2021 than in 2022. Our study highlights the ability of the virus to infect various animals. It presents the first report of natural SARS-CoV-2 infection in poultry, pigs, domestic ruminants, and lizards. The close human-animal interactions in these settings suggest ongoing reverse zoonosis, highlighting the role of behavioral factors of transmission and the potential for SARS-CoV-2 to spread among animals. These underscore the importance of continuous monitoring to detect and intervene in any eventual upsurge.


Sujet(s)
COVID-19 , SARS-CoV-2 , Animaux , Humains , Suidae , SARS-CoV-2/génétique , Nigeria/épidémiologie , COVID-19/épidémiologie , COVID-19/médecine vétérinaire , Pandémies , ARN viral/génétique , Zoonoses/épidémiologie , Animaux domestiques , Capra
17.
Am J Trop Med Hyg ; 108(6): 1115-1121, 2023 06 07.
Article de Anglais | MEDLINE | ID: mdl-37094786

RÉSUMÉ

Prior to 2018, malaria therapeutic efficacy studies (TESs) in Nigeria were implemented separately at different sites, as assigned by the National Malaria Elimination Program (NMEP). In 2018, however, the NMEP engaged the Nigerian Institute of Medical Research to coordinate the 2018 TESs in 3 of 14 sentinel sites with the objective of standardizing their conduct across all three sites: Enugu, Kano, and Plateau states in three of six geopolitical zones. Artemether-lumefantrine and artesunate-amodiaquine, the two first-line drugs for treatment of acute uncomplicated malaria in Nigeria, were tested in both Kano and Plateau states. In Enugu State, however, artemether-lumefantrine and dihydroartemisinin-piperaquine were the test drugs, with dihydroartemisinin-piperaquine being tested for potential inclusion in Nigerian treatment policy. The TES was conducted in 6-month to 8-year-old children and was funded by the Global Fund with additional support from the WHO. A multipartite core team comprised of the NMEP, the WHO, the U.S. Presidential Malaria Initiative, academia, and the Nigerian Institute of Medical Research was set up to oversee the execution of the 2018 TES. This communication reports best practices adopted to guide its coordination, and lessons learned during in the process, including applying developed standard operating procedures, powering the sample size adequately for each site to report independently, training the investigating team for fieldwork, facilitating stratification of decisions, determining efficiencies derived from monitoring and quality assessment, and optimizing logistics. The planning and coordination of the 2018 TES activities is a model of a consultative process for the sustainability of antimalarial resistance surveillance in Nigeria.


Sujet(s)
Antipaludiques , Paludisme à Plasmodium falciparum , Paludisme , Enfant , Humains , Antipaludiques/usage thérapeutique , Nigeria/épidémiologie , Paludisme à Plasmodium falciparum/traitement médicamenteux , Artéméther/usage thérapeutique , Association médicamenteuse , Association d'artéméther et de luméfantrine/usage thérapeutique , Paludisme/traitement médicamenteux , Amodiaquine/usage thérapeutique , Éthanolamines/usage thérapeutique , Fluorènes/usage thérapeutique
18.
Pathogens ; 12(4)2023 Apr 14.
Article de Anglais | MEDLINE | ID: mdl-37111480

RÉSUMÉ

Typhoid fever remains a significant public health concern due to cases of mis-/overdiagnosis. Asymptomatic carriers play a role in the transmission and persistence of typhoid fever, especially among children, where limited data exist in Nigeria and other endemic countries. We aim to elucidate the burden of typhoid fever among healthy school-aged children using the best surveillance tool(s). In a semi-urban/urban state (Osun), 120 healthy school-aged children under 15 years were enrolled. Whole blood and fecal samples were obtained from consenting children. ELISA targeting the antigen lipopolysaccharide (LPS) and anti-LPS antibodies of Salmonella Typhi, culture, polymerase chain reaction (PCR), and next-generation sequencing (NGS) were used to analyze the samples. At least one of the immunological markers was detected in 65.8% of children, with 40.8%, 37.5%, and 39% of children testing positive for IgM, IgG, and antigen, respectively. Culture, PCR, and NGS assays did not detect the presence of Salmonella Typhi in the isolates. This study demonstrates a high seroprevalence of Salmonella Typhi in these healthy children but no carriage, indicating the inability to sustain transmission. We also demonstrate that using a single technique is insufficient for typhoid fever surveillance in healthy children living in endemic areas.

19.
PLoS One ; 18(3): e0283643, 2023.
Article de Anglais | MEDLINE | ID: mdl-36996258

RÉSUMÉ

BACKGROUND: Lassa fever (LF), a haemorrhagic illness caused by the Lassa fever virus (LASV), is endemic in West Africa and causes 5000 fatalities every year. The true prevalence and incidence rates of LF are unknown as infections are often asymptomatic, clinical presentations are varied, and surveillance systems are not robust. The aim of the Enable Lassa research programme is to estimate the incidences of LASV infection and LF disease in five West African countries. The core protocol described here harmonises key study components, such as eligibility criteria, case definitions, outcome measures, and laboratory tests, which will maximise the comparability of data for between-country analyses. METHOD: We are conducting a prospective cohort study in Benin, Guinea, Liberia, Nigeria (three sites), and Sierra Leone from 2020 to 2023, with 24 months of follow-up. Each site will assess the incidence of LASV infection, LF disease, or both. When both incidences are assessed the LASV cohort (nmin = 1000 per site) will be drawn from the LF cohort (nmin = 5000 per site). During recruitment participants will complete questionnaires on household composition, socioeconomic status, demographic characteristics, and LF history, and blood samples will be collected to determine IgG LASV serostatus. LF disease cohort participants will be contacted biweekly to identify acute febrile cases, from whom blood samples will be drawn to test for active LASV infection using RT-PCR. Symptom and treatment data will be abstracted from medical records of LF cases. LF survivors will be followed up after four months to assess sequelae, specifically sensorineural hearing loss. LASV infection cohort participants will be asked for a blood sample every six months to assess LASV serostatus (IgG and IgM). DISCUSSION: Data on LASV infection and LF disease incidence in West Africa from this research programme will determine the feasibility of future Phase IIb or III clinical trials for LF vaccine candidates.


Sujet(s)
Fièvre de Lassa , Humains , Études de cohortes , Immunoglobuline G , Incidence , Fièvre de Lassa/épidémiologie , Fièvre de Lassa/diagnostic , Virus de Lassa , Liberia , Études prospectives , Études multicentriques comme sujet
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...