Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 20
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Br J Hosp Med (Lond) ; 80(10): 589-593, 2019 Oct 02.
Article de Anglais | MEDLINE | ID: mdl-31589506

RÉSUMÉ

Multiple organ dysfunction and resultant mortality in critically ill patients has been linked with impaired cellular energy supply and oxidative stress. Clinical studies supplementing selenium, on the basis of its role as a key cofactor of antioxidant enzymes, have reported variable outcomes in critically ill patients. However, the synergistic interaction between selenium and coenzyme Q10, which has essential roles in cellular energy supply and as an antioxidant, has not been considered in such studies. This article reviews the link between selenium and coenzyme Q10, and the potential role of their co-supplementation in critical illness.


Sujet(s)
Maladie grave/thérapie , Compléments alimentaires , Défaillance multiviscérale/prévention et contrôle , Sélénium/usage thérapeutique , Ubiquinones/analogues et dérivés , Antioxydants/pharmacologie , Marqueurs biologiques , Essais cliniques comme sujet , Association de médicaments , Humains , Médiateurs de l'inflammation/métabolisme , Défaillance multiviscérale/physiopathologie , Stress oxydatif/effets des médicaments et des substances chimiques , Sélénium/administration et posologie , Ubiquinones/administration et posologie , Ubiquinones/usage thérapeutique
2.
Cell Death Dis ; 7: e2237, 2016 05 26.
Article de Anglais | MEDLINE | ID: mdl-27228352

RÉSUMÉ

Friedreich's ataxia (FRDA) is an inherited neurodegenerative disease. The mutation consists of a GAA repeat expansion within the FXN gene, which downregulates frataxin, leading to abnormal mitochondrial iron accumulation, which may in turn cause changes in mitochondrial function. Although, many studies of FRDA patients and mouse models have been conducted in the past two decades, the role of frataxin in mitochondrial pathophysiology remains elusive. Are the mitochondrial abnormalities only a side effect of the increased accumulation of reactive iron, generating oxidative stress? Or does the progressive lack of iron-sulphur clusters (ISCs), induced by reduced frataxin, cause an inhibition of the electron transport chain complexes (CI, II and III) leading to reactive oxygen species escaping from oxidative phosphorylation reactions? To answer these crucial questions, we have characterised the mitochondrial pathophysiology of a group of disease-relevant and readily accessible neurons, cerebellar granule cells, from a validated FRDA mouse model. By using live cell imaging and biochemical techniques we were able to demonstrate that mitochondria are deregulated in neurons from the YG8R FRDA mouse model, causing a decrease in mitochondrial membrane potential (▵Ψm) due to an inhibition of Complex I, which is partially compensated by an overactivation of Complex II. This complex activity imbalance leads to ROS generation in both mitochondrial matrix and cytosol, which results in glutathione depletion and increased lipid peroxidation. Preventing this increase in lipid peroxidation, in neurons, protects against in cell death. This work describes the pathophysiological properties of the mitochondria in neurons from a FRDA mouse model and shows that lipid peroxidation could be an important target for novel therapeutic strategies in FRDA, which still lacks a cure.


Sujet(s)
Protéines de liaison au fer/génétique , Peroxydation lipidique/génétique , Potentiel de membrane mitochondriale , Mitochondries/métabolisme , Neurones/métabolisme , Animaux , Cervelet/métabolisme , Cervelet/anatomopathologie , Modèles animaux de maladie humaine , Complexe I de la chaîne respiratoire/génétique , Complexe I de la chaîne respiratoire/métabolisme , Complexe II de la chaîne respiratoire/génétique , Complexe II de la chaîne respiratoire/métabolisme , Complexe III de la chaîne respiratoire/génétique , Complexe III de la chaîne respiratoire/métabolisme , Ataxie de Friedreich/génétique , Ataxie de Friedreich/métabolisme , Ataxie de Friedreich/anatomopathologie , Régulation de l'expression des gènes , Glutathion/métabolisme , Humains , Fer/métabolisme , Protéines de liaison au fer/métabolisme , Souris , Mitochondries/anatomopathologie , Mutation , Neurones/anatomopathologie , Stress oxydatif , Culture de cellules primaires , Espèces réactives de l'oxygène/métabolisme , Transduction du signal ,
3.
Mitochondrion ; 15: 10-7, 2014 Mar.
Article de Anglais | MEDLINE | ID: mdl-24613463

RÉSUMÉ

Rett syndrome (RTT) is a severe neurodevelopmental disorder, predominantly caused by mutations in the X-linked Methyl-CpG-binding protein 2 (MECP2) gene. Patients present with numerous functional deficits including intellectual disability and abnormalities of movement. Clinical and biochemical features may overlap with those seen in patients with primary mitochondrial respiratory chain disorders. In the late stages of the disorder, patients suffer from motor deterioration and usually require assisted mobility. Using a mouse model of RTT (Mecp2(tm1Tam)), we studied the mitochondrial function in the hind-limb skeletal muscle of these mice. We identified a reduction in cytochrome c oxidase subunit I (MTCO1) at both the transcript and protein level, in accordance with our previous findings in RTT patient brain studies. Mitochondrial respiratory chain (MRC) enzyme activity of complexes II+III (COII+III) and complex IV (COIV), and glutathione (GSH) levels were significantly reduced in symptomatic mice, but not in the pre-symptomatic mice. Our findings suggest that mitochondrial abnormalities in the skeletal muscle may contribute to the progressive deterioration in mobility in RTT through the accumulation of free radicals, as evidenced by the decrease in reduced glutathione (GSH). We hypothesise that a diminution in GSH leads to an accumulation of free radicals and an increase in oxidative stress. This may impact on respiratory chain function and contribute in part to the progressive neurological and motor deterioration seen in the Mecp2-mutant mouse. Treatment strategies aimed at restoring cellular GSH levels may prove to be a novel target area to consider in future approaches to RTT therapies.


Sujet(s)
Mitochondries/physiologie , Muscles squelettiques/physiopathologie , Syndrome de Rett/physiopathologie , Animaux , Modèles animaux de maladie humaine , Complexe II de la chaîne respiratoire/analyse , Complexe III de la chaîne respiratoire/analyse , Complexe IV de la chaîne respiratoire/analyse , Radicaux libres/toxicité , Glutathion/analyse , Humains , Souris , Mitochondries/enzymologie , Mitochondries/métabolisme , Stress oxydatif
4.
Int J Biochem Cell Biol ; 50: 60-3, 2014 May.
Article de Anglais | MEDLINE | ID: mdl-24534273

RÉSUMÉ

Primary Coenzyme Q10 (CoQ10) deficiency is an autosomal recessive disorder with a heterogeneous clinical presentation. Common presenting features include both muscle and neurological dysfunction. Muscle abnormalities can improve, both clinically and biochemically following CoQ10 supplementation, however neurological symptoms are only partially ameliorated. At present, the reasons for the refractory nature of the neurological dysfunction remain unknown. In order to investigate this at the biochemical level we evaluated the effect of CoQ10 treatment upon a previously established neuronal cell model of CoQ10 deficiency. This model was established by treatment of human SH-SY5Y neuronal cells with 1 mM para-aminobenzoic acid (PABA) which induced a 54% decrease in cellular CoQ10 status. CoQ10 treatment (2.5 µM) for 5 days significantly (p<0.0005) decreased the level of mitochondrial superoxide in the CoQ10 deficient neurons. In addition, CoQ10 treatment (5 µM) restored mitochondrial membrane potential to 90% of the control level. However, CoQ10 treatment (10 µM) was only partially effective at restoring mitochondrial electron transport chain (ETC) enzyme activities. ETC complexes II/III activity was significantly (p<0.05) increased to 82.5% of control levels. ETC complexes I and IV activities were restored to 71.1% and 77.7%, respectively of control levels. In conclusion, the results of this study have indicated that although mitochondrial oxidative stress can be attenuated in CoQ10 deficient neurons following CoQ10 supplementation, ETC enzyme activities appear partially refractory to treatment. Accordingly, treatment with >10 µM CoQ10 may be required to restore ETC enzyme activities to control level. Accordingly, these results have important implication for the treatment of the neurological presentations of CoQ10 deficiency and indicate that high doses of CoQ10 may be required to elicit therapeutic efficacy.


Sujet(s)
Ataxie/traitement médicamenteux , Ataxie/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Maladies mitochondriales/traitement médicamenteux , Maladies mitochondriales/métabolisme , Faiblesse musculaire/traitement médicamenteux , Faiblesse musculaire/métabolisme , Neurones/effets des médicaments et des substances chimiques , Neurones/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Ubiquinones/déficit , Lignée cellulaire tumorale , ADN mitochondrial/métabolisme , Compléments alimentaires , Transport d'électrons/effets des médicaments et des substances chimiques , Métabolisme énergétique/effets des médicaments et des substances chimiques , Humains , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Mitochondries/enzymologie , Mitochondries/métabolisme , Neuroblastome , Espèces réactives de l'oxygène/métabolisme , Ubiquinones/métabolisme
5.
Int J Biochem Cell Biol ; 49: 105-11, 2014 Apr.
Article de Anglais | MEDLINE | ID: mdl-24495877

RÉSUMÉ

Treatment of mitochondrial respiratory chain (MRC) disorders is extremely difficult, however, coenzyme Q10 (CoQ10) and its synthetic analogues are the only agents which have shown some therapeutic benefit to patients. CoQ10 serves as an electron carrier in the MRC as well as functioning as a potent lipid soluble antioxidant. CoQ10 supplementation is fundamental to the treatment of patients with primary defects in the CoQ10 biosynthetic pathway. The efficacy of CoQ10 and its analogues in the treatment of patients with MRC disorders not associated with a CoQ10 deficiency indicates their ability to restore electron flow in the MRC and/or increase mitochondrial antioxidant capacity may also be important contributory factors to their therapeutic potential.


Sujet(s)
Maladies mitochondriales/traitement médicamenteux , Ubiquinones/analogues et dérivés , Animaux , Ataxie/traitement médicamenteux , Humains , Structure moléculaire , Faiblesse musculaire/traitement médicamenteux , Résultat thérapeutique , Ubiquinones/composition chimique , Ubiquinones/déficit , Ubiquinones/usage thérapeutique
6.
Oncogene ; 32(20): 2592-600, 2013 May 16.
Article de Anglais | MEDLINE | ID: mdl-22777349

RÉSUMÉ

Primary mitochondrial dysfunction commonly leads to failure in cellular adaptation to stress. Paradoxically, however, nonsynonymous mutations of mitochondrial DNA (mtDNA) are frequently found in cancer cells and may have a causal role in the development of resistance to genotoxic stress induced by common chemotherapeutic agents, such as cis-diammine-dichloroplatinum(II) (cisplatin, CDDP). Little is known about how these mutations arise and the associated mechanisms leading to chemoresistance. Here, we show that the development of adaptive chemoresistance in the A549 non-small-cell lung cancer cell line to CDDP is associated with the hetero- to homoplasmic shift of a nonsynonymous mutation in MT-ND2, encoding the mitochondrial Complex-I subunit ND2. The mutation resulted in a 50% reduction of the NADH:ubiquinone oxidoreductase activity of the complex, which was compensated by increased biogenesis of respiratory chain complexes. The compensatory mitochondrial biogenesis was most likely mediated by the nuclear co-activators peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α) and PGC-1ß, both of which were significantly upregulated in the CDDP-resistant cells. Importantly, both transient and stable silencing of PGC-1ß re-established the sensitivity of these cells to CDDP-induced apoptosis. Remarkably, the PGC-1ß-mediated CDDP resistance was independent of the mitochondrial effects of the co-activator. Altogether, our results suggest that partial respiratory chain defects because of mtDNA mutations can lead to compensatory upregulation of nuclear transcriptional co-regulators, in turn mediating resistance to genotoxic stress.


Sujet(s)
Protéines de transport/métabolisme , ADN mitochondrial , Résistance aux médicaments antinéoplasiques/génétique , Mutation , Adaptation physiologique , Carcinome pulmonaire non à petites cellules/traitement médicamenteux , Carcinome pulmonaire non à petites cellules/génétique , Carcinome pulmonaire non à petites cellules/métabolisme , Protéines de transport/génétique , Lignée cellulaire tumorale , Cisplatine/pharmacologie , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Protéines du choc thermique/génétique , Protéines du choc thermique/métabolisme , Humains , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/génétique , Tumeurs du poumon/métabolisme , NADH dehydrogenase/génétique , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes , Protéines de liaison à l'ARN , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
7.
J Inherit Metab Dis ; 32(2): 269-73, 2009 Apr.
Article de Anglais | MEDLINE | ID: mdl-19169843

RÉSUMÉ

The pathogenesis of mitochondrial disorders has largely focused on the impairment of cellular energy metabolism. However, mitochondrial dysfunction has also been implicated as a factor in the initiation of apoptosis due to the translocation of cytochrome c, from mitochondria to the cytosol, and the subsequent cleavage of pro-caspase 3. In this study, we determined the cytochrome c content of cytosols (skeletal muscle) prepared from 22 patients with evidence of compromised mitochondrial electron transport chain enzyme activity and 26 disease controls. The cytochrome c content of the mitochondrial electron transport chain-deficient group was found to be significantly (p < 0.02) elevated when compared with the control group (63.7 +/- 15.5 versus 27.7 +/- 2.5 ng/mg protein). Furthermore, a relationship between the cytosolic cytochrome c content of skeletal muscle and complex I and complex IV activities was demonstrated. Such data raise the possibility that mitochondrial cytochrome c release may be a feature of mitochondrial disorders, particularly for those patients with marked deficiencies of respiratory chain enzymes. Whether initiation of apoptosis occurs as a direct consequence of this cytochrome c release has not been fully evaluated here. However, for one patient with the greatest documented cytosolic cytochrome c content, caspase 3 could be demonstrated in the cytosolic preparation. Further work is required in order to establish whether a relationship also exists between caspase 3 formation and the magnitude of respiratory chain deficiency.


Sujet(s)
Cytochromes c/métabolisme , Mitochondries/enzymologie , Maladies mitochondriales/enzymologie , Adolescent , Adulte , Caspase-3/métabolisme , Enfant , Enfant d'âge préscolaire , Citrate (si)-synthase/métabolisme , Cytosol/enzymologie , Transport d'électrons/physiologie , Humains , Indicateurs et réactifs , Nourrisson , Nouveau-né , Adulte d'âge moyen , Protéines mitochondriales/métabolisme , Muscles squelettiques/enzymologie , Jeune adulte
8.
Mitochondrion ; 7(4): 284-7, 2007 Jul.
Article de Anglais | MEDLINE | ID: mdl-17395552

RÉSUMÉ

Mitochondrial encephalomyopathies, arising from deficiencies of the electron transport chain (ETC) give rise to a wide clinical spectrum of presentation and are often progressive in nature. The aetiology of mitochondrial encephalomyopathies have yet to be fully elucidated, however, a successive loss of ETC function may contribute to the progressive nature of these disorders. The possibility arises that as a consequence of a primary impairment of ETC activity, secondary damage to the ETC may occur. In order to investigate this hypothesis, we established a model of cytochrome oxidase (Complex IV) deficiency in cultured human astrocytoma 1321N cells. Potassium cyanide (KCN, 1mM) resulted in a sustained 50% (p<0.01) loss of complex IV. At 24h activities of the other ETC complexes were unaffected. However, at 72h significant loss of succinate-cytochrome c reductase (complex II-III) activity expressed as a ratio to the mitochondrial marker, citrate synthase was observed. (KCN treated; 0.065+/-0.011 vs controls; 0.118+/-0.017 mean+/-SEM, n=8, p<0.05). These results provide a possible mechanism for the progressive nature of ETC defects and why in some patients multiple patterns of ETC deficiencies can be demonstrated.


Sujet(s)
Complexe III de la chaîne respiratoire/métabolisme , Complexe II de la chaîne respiratoire/métabolisme , Complexe IV de la chaîne respiratoire/antagonistes et inhibiteurs , Complexe IV de la chaîne respiratoire/métabolisme , Encéphalomyopathies mitochondriales/enzymologie , Encéphalomyopathies mitochondriales/anatomopathologie , Astrocytome/métabolisme , Lignée cellulaire , Citrate (si)-synthase/métabolisme , Coenzymes/métabolisme , Glutathion/métabolisme , Humains , Encéphalomyopathies mitochondriales/thérapie , Chlorure de potassium/pharmacologie , Liaison aux protéines , Ubiquinones/analogues et dérivés , Ubiquinones/métabolisme
9.
Hum Mol Genet ; 14(15): 2231-9, 2005 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-15987702

RÉSUMÉ

The nuclear-encoded Krebs cycle enzymes, fumarate hydratase (FH) and succinate dehydrogenase (SDHB, -C and -D), act as tumour suppressors. Germline mutations in FH predispose individuals to leiomyomas and renal cell cancer (HLRCC), whereas mutations in SDH cause paragangliomas and phaeochromocytomas (HPGL). In this study, we have shown that FH-deficient cells and tumours accumulate fumarate and, to a lesser extent, succinate. SDH-deficient tumours principally accumulate succinate. In situ analyses showed that these tumours also have over-expression of hypoxia-inducible factor 1alpha (HIF1alpha), activation of HIF1alphatargets (such as vascular endothelial growth factor) and high microvessel density. We found no evidence of increased reactive oxygen species in our cells. Our data provide in vivo evidence to support the hypothesis that increased succinate and/or fumarate causes stabilization of HIF1alpha a plausible mechanism, inhibition of HIF prolyl hydroxylases, has previously been suggested by in vitro studies. The basic mechanism of tumorigenesis in HPGL and HLRCC is likely to be pseudo-hypoxic drive, just as it is in von Hippel-Lindau syndrome.


Sujet(s)
Fumarate hydratase/génétique , Mutation germinale , Succinate Dehydrogenase/génétique , Succinate Dehydrogenase/métabolisme , Néphrocarcinome/métabolisme , Cycle citrique/physiologie , Femelle , Fumarate hydratase/métabolisme , Humains , Léiomyome/génétique , Léiomyome/métabolisme , Tumeurs/génétique , Tumeurs/métabolisme , Paragangliome/génétique , Paragangliome/métabolisme , Cellules cancéreuses en culture , Facteur de croissance endothéliale vasculaire de type A/métabolisme
10.
J Inherit Metab Dis ; 28(1): 81-8, 2005.
Article de Anglais | MEDLINE | ID: mdl-15702408

RÉSUMÉ

Glutathione (GSH) is a key intracellular antioxidant. With regard to mitochondrial function, loss of GSH is associated with impairment of the electron transport chain (ETC). Since GSH biosynthesis is an energy-dependent process, we postulated that in patients with ETC defects GSH status becomes compromised, leading to further loss of ETC activity. We performed electrochemical HPLC analysis to determine the GSH concentration of 24 skeletal muscle biopsies from patients with defined ETC defects compared to 15 age-matched disease controls. Comparison of these groups revealed a significant (p < 0.001) decrease in GSH concentration in the ETC-deficient group: 7.7 +/- 0.9 vs 12.3 +/- 0.6 nmol/mg protein in the control group. Further analysis of the data revealed that patients with multiple defects of the ETC had the most marked GSH deficiency: 4.1 +/- 0.9 nmol/mg protein (n = 4, p < 0.05) when compared to the control group. These findings suggest that a deficiency in skeletal muscle GSH concentration is associated with an ETC defect, possibly as a consequence of diminished ATP availability or increased oxidative stress. The decreased ability to combat oxidative stress could therefore cause further loss of ETC activity and hence be a contributing factor in the progressive nature of this group of disorders. Furthermore, restoration of cellular GSH status could prove to be of therapeutic benefit in patients with a GSH deficiency associated with their ETC defects.


Sujet(s)
Glutathion/déficit , Maladies mitochondriales/anatomopathologie , Maladies mitochondriales/thérapie , Adénosine triphosphate/métabolisme , Facteurs âges , Antioxydants/pharmacologie , Enfant , Enfant d'âge préscolaire , Chromatographie en phase liquide à haute performance , Femelle , Glutathion/métabolisme , Humains , Nourrisson , Mâle , Muscles squelettiques/métabolisme , Stress oxydatif , Facteurs sexuels , Facteurs temps
11.
Biochem Biophys Res Commun ; 328(2): 623-32, 2005 Mar 11.
Article de Anglais | MEDLINE | ID: mdl-15694394

RÉSUMÉ

Mitochondria have been suggested to be a potential intracellular target for cancer chemotherapy. In this report, we demonstrate the ability of the tricyclic antidepressant chlorimipramine to kill human glioma cells in vitro by a molecular mechanism resulting in an increase in caspase 3 activity following inhibition of glioma oxygen consumption. Studies with isolated rat mitochondria showed that chlorimipramine specifically inhibited mitochondrial complex III activity, which causes decreased mitochondrial membrane potential as well as mitochondrial swelling and vacuolation. The use of chlorimipramine in human as an effective, non-toxic cancer therapeutic having a strong selectivity between cancer cells and normal cells on the basis of their mitochondrial function is discussed.


Sujet(s)
Antinéoplasiques/administration et posologie , Clomipramine/administration et posologie , Gliome/métabolisme , Gliome/anatomopathologie , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/anatomopathologie , Animaux , Tumeurs du cerveau/traitement médicamenteux , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/anatomopathologie , Respiration cellulaire/effets des médicaments et des substances chimiques , Taille de la cellule/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Relation dose-effet des médicaments , Complexe III de la chaîne respiratoire/antagonistes et inhibiteurs , Complexe III de la chaîne respiratoire/métabolisme , Gliome/traitement médicamenteux , Humains , Mâle , Potentiels de membrane/effets des médicaments et des substances chimiques , Consommation d'oxygène/effets des médicaments et des substances chimiques , Rats , Rat Wistar , Cellules cancéreuses en culture
12.
J Inherit Metab Dis ; 26(5): 505-6, 2003.
Article de Anglais | MEDLINE | ID: mdl-14518830

RÉSUMÉ

A case of pyruvate dehydrogenase E3 binding protein deficiency is reported in a 24-year-old male with encephalomyopathy. Blood lactate was only minimally elevated, as was alanine.


Sujet(s)
Alanine/sang , Acide lactique/sang , Peptides/déficit , Adulte , Humains , Mâle , Complexe du pyruvate déshydrogénase
13.
Neurology ; 59(9): 1447-9, 2002 Nov 12.
Article de Anglais | MEDLINE | ID: mdl-12427904

RÉSUMÉ

Serum glutathione levels were assessed in a patient with genetically proven Unverricht-Lundborg disease (ULD) before and during treatment with the antioxidant N-acetylcysteine (NAC). Glutathione levels were low before treatment, and increased during treatment. This increase was mirrored by an improvement in seizures, but not in myoclonus or ataxia. Three other patients with clinically determined ULD showed a variable response and some notable side effects during treatment with NAC.


Sujet(s)
Acétylcystéine/administration et posologie , Acétylcystéine/effets indésirables , Antioxydants/administration et posologie , Antioxydants/effets indésirables , Syndrome d'Unverricht-Lundborg/traitement médicamenteux , Adulte , Femelle , Glutathion/sang , Humains , Mâle , Adulte d'âge moyen , Syndrome d'Unverricht-Lundborg/sang
14.
Amino Acids ; 22(2): 109-18, 2002.
Article de Anglais | MEDLINE | ID: mdl-12395179

RÉSUMÉ

Measurement of plasma total cysteine rather than free dimeric cystine gives a better indication of cysteine status in homocystinuric patients. This is the result of displacement of cysteine from albumin by homocysteine and is related to the plasma homocysteine concentration. In control subjects the free/bound cyst(e)ine ratio was independent of albumin and total cysteine concentrations. In homocystinuric (HCU) patients both free and total cyst(e)ine values differed significantly from control values (P < 0.001) but whilst free cystine considerably overlapped control values the total cysteine concentrations were almost invariably lower. The possible consequences of this on glutathione synthesis was explored by assay of plasma total glutathione but no evidence for glutathione deficiency was found. Measurement of total cysteine, rather than free cystine, provides a better indication of cysteine status in HCU.


Sujet(s)
Cystéine/sang , Glutathion/sang , Homocystéine/sang , Homocystinurie/sang , Adolescent , Adulte , Albumines/métabolisme , Cystathionine beta-synthase/déficit , Cystéine/métabolisme , Femelle , Homocystéine/métabolisme , Homocystinurie/métabolisme , Humains , Mâle , Adulte d'âge moyen , Liaison aux protéines
15.
J Inherit Metab Dis ; 25(8): 673-9, 2002 Dec.
Article de Anglais | MEDLINE | ID: mdl-12705497

RÉSUMÉ

Coenzyme Q10 (CoQ10) serves as an electron carrier within the mitochondrial respiratory chain (MRC), where it is integrally involved in oxidative phosphorylation and consequently ATP production. It has recently been suggested that phenylketonuria (PKU) patients may be susceptible to a CoQ10 deficiency as a consequence of their phenylalanine-restricted diet, which avoids foods rich in CoQ10 and its precursors. Furthermore, the high phenylalanine level in PKU patients not on dietary restriction may also result in impaired endogenous CoQ10 production, as previous studies have suggested an inhibitory effect of phenylalanine on HMG-CoA reductase, the rate-controlling enzyme in CoQ10 biosynthesis. We investigated the effect of both dietary restriction and elevated plasma phenylalanine concentration on blood mononuclear cell CoQ10 concentration and the activity of MRC complex II + III (succinate:cytochrome-c reductase; an enzyme that relies on endogenous CoQ10) in a PKU patient population. The concentrations of CoQ10 and MRC complex II + III activity were not found to be significantly different between the PKU patients on dietary restriction, PKU patients off dietary restriction and the control group, although plasma phenylalanine levels were markedly different. The results from this investigation suggest that dietary restriction and the elevated plasma phenylalanine levels of PKU patients do not effect mononuclear cell CoQ10 concentration and consequently the activity of complex II + III of the MRC.


Sujet(s)
Maladies mitochondriales/enzymologie , Monocytes/enzymologie , Phénylcétonuries/enzymologie , Succinate dehydrogenase(ubiquinone)/sang , Ubiquinones/analogues et dérivés , Ubiquinones/sang , Adolescent , Adulte , Chromatographie en phase liquide à haute performance , Citrate (si)-synthase/sang , Coenzymes , Femelle , Humains , Hydroxymethylglutaryl-CoA reductases/métabolisme , Mâle , Adulte d'âge moyen , Maladies mitochondriales/sang , Maladies mitochondriales/diétothérapie , Phénylalanine/sang , Phénylalanine/métabolisme , Phénylcétonuries/sang
16.
Dev Neurosci ; 22(5-6): 359-65, 2000.
Article de Anglais | MEDLINE | ID: mdl-11111151

RÉSUMÉ

The effect of aglycaemic hypoxia (AH) on the activity of the mitochondrial respiratory chain complexes was measured in superfused neonatal cortical brain slices. After 30 min AH, there were no significant changes in the activities of complex I, II-III and IV or citrate synthase compared to controls. Following 30 min AH and a 30-min reperfusion period (with oxygen and glucose), the activities of complex II-III and complex IV were significantly reduced (by 25 and 17%, respectively). These reductions in enzyme activity were not abrogated by removing external calcium prior to and throughout AH, but could be reversed by the presence of the nitric oxide (NO) synthase inhibitor N omega-nitro-L-arginine during these periods. These data suggest that NO or an NO-derived species is involved in the decreases in mitochondrial enzyme activities observed after AH


Sujet(s)
Cortex cérébral/métabolisme , Glucose/métabolisme , Hypoxie cérébrale/métabolisme , Mitochondries/enzymologie , Monoxyde d'azote/métabolisme , Animaux , Animaux nouveau-nés , Cortex cérébral/cytologie , Cortex cérébral/effets des médicaments et des substances chimiques , Citrate (si)-synthase/métabolisme , Complexe I de la chaîne respiratoire , Complexe II de la chaîne respiratoire , Complexe III de la chaîne respiratoire/métabolisme , Complexe IV de la chaîne respiratoire/métabolisme , Femelle , Glucose/déficit , Techniques in vitro , Mâle , Mitochondries/effets des médicaments et des substances chimiques , Complexes multienzymatiques/métabolisme , NADH, NADPH oxidoreductases/métabolisme , Monoxyde d'azote/pharmacologie , Oxidoreductases/métabolisme , Rats , Rat Wistar , Succinate Dehydrogenase/métabolisme
18.
J Inherit Metab Dis ; 22(8): 925-31, 1999 Dec.
Article de Anglais | MEDLINE | ID: mdl-10604144

RÉSUMÉ

Both the activity of lactate dehydrogenase (LDH) and the quantity of manganese superoxide dismutase (MnSOD) protein have been reported to be increased in fibroblasts from individual with mitochondrial electron transport chain defects. To ascertain whether this is a general phenomenon, we have determined the specific activities of these enzymes in skeletal muscle biopsies from control individuals and patients with defined electron transport chain defects. On investigation, both LDH and MnSOD activities were not found to be elevated. These findings suggest a possible fundamental difference between skeletal muscle preparations and fibroblasts with regard to their metabolic response to an electron transport chain defect.


Sujet(s)
L-Lactate dehydrogenase/métabolisme , Mitochondries/enzymologie , Muscles squelettiques/enzymologie , Superoxide dismutase/métabolisme , Enfant , Enfant d'âge préscolaire , Citrate (si)-synthase/métabolisme , Humains , Nourrisson , Pedigree
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...