Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
2.
Sci China Life Sci ; 62(10): 1375-1380, 2019 Oct.
Article de Anglais | MEDLINE | ID: mdl-31463736

RÉSUMÉ

Crouzon syndrome is the result of a gain-of-function point mutation in FGFR2. Mimicking the human mutation, a mouse model of Crouzon syndrome (Fgfr2342Y) recapitulates patient deformities, including failed tracheal cartilage segmentation, resulting in a cartilaginous sleeve in the homozygous mutants. We found that the Fgfr2C342Y/C342Y mutants exhibited an increase in chondrocytes prior to segmentation. This increase is due at least in part to over proliferation. Genetic ablation of chondrocytes in the mutant led to restoration of segmentation in the lateral but not central portion of the trachea. These results suggest that in the Fgfr2C342Y/C342Y mutants, increased cartilage cell proliferation precedes and contributes to the disruption of cartilage segmentation in the developing trachea.


Sujet(s)
Cartilage/métabolisme , Dysostose craniofaciale/génétique , Récepteur FGFR2/génétique , Trachée/métabolisme , Animaux , Os et tissu osseux/métabolisme , Prolifération cellulaire , Dysostose craniofaciale/métabolisme , Modèles animaux de maladie humaine , Femelle , Humains , Poumon/métabolisme , Souris/embryologie , Ostéoblastes/anatomopathologie , Phénotype , Mutation ponctuelle , Grossesse , Récepteur FGFR2/métabolisme
4.
Dev Dyn ; 245(4): 497-507, 2016 Apr.
Article de Anglais | MEDLINE | ID: mdl-26813283

RÉSUMÉ

BACKGROUND: Fras1 encodes an extracellular matrix protein that is critical for the establishment of the epidermal basement membrane during gestation. In humans, mutations in FRAS1 cause Fraser Syndrome (FS), a pleiotropic condition with many clinical presentations such as limb, eye, kidney, and craniofacial deformations. Many of these defects are mimicked by loss of Fras1 in mice, and are preceded by the formation of epidermal blisters in utero. RESULTS: In this study, we identified a novel ENU-derived rounded foot (rdf) mouse mutant with highly penetrant hindlimb soft-tissue syndactyly, among other structural defects. Mapping and sequencing revealed that rdf is a novel loss-of-function nonsense allele of Fras1 (Fras1(rdf)). Focusing on the limb, we found that the Fras1(rdf) syndactyly phenotype originates from loss of interdigital cell death (ICD). Despite normal expression of bone morphogenetic protein (BMP) ligands and their receptors, the BMP downstream target gene Msx2, which is also necessary and sufficient to promote ICD, was down-regulated in the interdigital regions of Fras1(rdf) hindlimb buds. CONCLUSIONS: The close correlation between limb bud epidermal blistering, decreased Msx2 expression, and reduced ICD in the Fras1(rdf) hindlimb buds suggests that epithelium detachment from the mesenchyme may create a physical gap that interrupts the transmission of BMP, among other signals, resulting in soft tissue syndactyly.


Sujet(s)
Apoptose , Protéines de la matrice extracellulaire/métabolisme , Membre pelvien/embryologie , Mutation , Syndactylie/embryologie , Animaux , Protéines morphogénétiques osseuses/génétique , Protéines morphogénétiques osseuses/métabolisme , Protéines de la matrice extracellulaire/génétique , Membre pelvien/anatomopathologie , Protéines à homéodomaine/génétique , Protéines à homéodomaine/métabolisme , Humains , Souris , Souches mutantes de souris , Syndactylie/génétique , Syndactylie/anatomopathologie
5.
Proc Natl Acad Sci U S A ; 110(48): 19444-9, 2013 Nov 26.
Article de Anglais | MEDLINE | ID: mdl-24218621

RÉSUMÉ

In the trachea and bronchi of the mouse, airway smooth muscle (SM) and cartilage are localized to complementary domains surrounding the airway epithelium. Proper juxtaposition of these tissues ensures a balance of elasticity and rigidity that is critical for effective air passage. It is unknown how this tissue complementation is established during development. Here we dissect the developmental relationship between these tissues by genetically disrupting SM formation (through Srf inactivation) or cartilage formation (through Sox9 inactivation) and assessing the impact on the remaining lineage. We found that, in the trachea and main bronchi, loss of SM or cartilage resulted in an increase in cell number of the remaining lineage, namely the cartilage or SM, respectively. However, only in the main bronchi, but not in the trachea, did the loss of SM or cartilage lead to a circumferential expansion of the remaining cartilage or SM domain, respectively. In addition to SM defects, cartilage-deficient tracheas displayed epithelial phenotypes, including decreased basal cell number, precocious club cell differentiation, and increased secretoglobin expression. These findings together delineate the mechanisms through which a cell-autonomous disruption of one structural tissue can have widespread consequences on upper airway function.


Sujet(s)
Bronches/embryologie , Cartilage/embryologie , Morphogenèse/physiologie , Muscles lisses/embryologie , Trachée/embryologie , Trachéomalacie/embryologie , Animaux , Technique d'immunofluorescence , Hybridation in situ , Poumon/embryologie , Souris , Réaction de polymérisation en chaine en temps réel , Facteur de transcription SOX-9/métabolisme
6.
Dev Dyn ; 241(9): 1432-53, 2012 Sep.
Article de Anglais | MEDLINE | ID: mdl-22711520

RÉSUMÉ

BACKGROUND: Mammalian lung development consists of a series of precisely choreographed events that drive the progression from simple lung buds to the elaborately branched organ that fulfills the vital function of gas exchange. Strict transcriptional control is essential for lung development. Among the large number of transcription factors encoded in the mouse genome, only a small portion of them are known to be expressed and function in the developing lung. Thus a systematic investigation of transcription factors expressed in the lung is warranted. RESULTS: To enrich for genes that may be responsible for regional growth and patterning, we performed a screen using RNA in situ hybridization to identify genes that show restricted expression patterns in the embryonic lung. We focused on the pseudoglandular stage during which the lung undergoes branching morphogenesis, a cardinal event of lung development. Using a genome-scale probe set that represents over 90% of the transcription factors encoded in the mouse genome, we identified 62 transcription factor genes with localized expression in the epithelium, mesenchyme, or both. Many of these genes have not been previously implicated in lung development. CONCLUSIONS: Our findings provide new starting points for the elucidation of the transcriptional circuitry that controls lung development.


Sujet(s)
Régulation de l'expression des gènes au cours du développement , Poumon/embryologie , Poumon/métabolisme , Facteurs de transcription/génétique , Animaux , Embryon de mammifère , Analyse de profil d'expression de gènes/méthodes , Génome/génétique , Tests de criblage à haut débit , Hybridation in situ/méthodes , Souris , Morphogenèse/génétique , Muqueuse respiratoire/cytologie , Muqueuse respiratoire/embryologie , Muqueuse respiratoire/métabolisme , Facteurs de transcription/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...