Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 55
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
ACS Appl Energy Mater ; 6(22): 11560-11572, 2023 Nov 27.
Article de Anglais | MEDLINE | ID: mdl-38037632

RÉSUMÉ

The search for safe electrolytes to promote the application of lithium-sulfur (Li-S) batteries may be supported by the investigation of viscous glyme solvents. Hence, electrolytes using nonflammable tetraethylene glycol dimethyl ether added by lowly viscous 1,3-dioxolane (DOL) are herein thoroughly investigated for sustainable Li-S cells. The electrolytes are characterized by low flammability, a thermal stability of ∼200 °C, ionic conductivity exceeding 10-3 S cm-1 at 25 °C, a Li+ transference number of ∼0.5, electrochemical stability window from 0 to ∼4.4 V vs Li+/Li, and a Li stripping-deposition overpotential of ∼0.02 V. The progressive increase of the DOL content from 5 to 15 wt % raises the activation energy for Li+ motion, lowers the transference number, slightly limits the anodic stability, and decreases the Li/electrolyte resistance. The electrolytes are used in Li-S cells with a composite consisting of sulfur and multiwalled carbon nanotubes mixed in the 90:10 weight ratio, exploiting an optimized current collector. The cathode is preliminarily studied in terms of structure, thermal behavior, and morphology and exploited in a cell using standard electrolyte. This cell performs over 200 cycles, with sulfur loading increased to 5.2 mg cm-2 and the electrolyte/sulfur (E/S) ratio decreased to 6 µL mg-1. The above sulfur cathode and the glyme-based electrolytes are subsequently combined in safe Li-S batteries, which exhibit cycle life and delivered capacity relevantly influenced by the DOL content within the studied concentration range.

2.
ACS Appl Mater Interfaces ; 15(33): 39218-39233, 2023 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-37552158

RÉSUMÉ

Lithium-oxygen (Li-O2) batteries are nowadays among the most appealing next-generation energy storage systems in view of a high theoretical capacity and the use of transition-metal-free cathodes. Nevertheless, the practical application of these batteries is still hindered by limited understanding of the relationships between cell components and performances. In this work, we investigate a Li-O2 battery by originally screening different gas diffusion layers (GDLs) characterized by low specific surface area (<40 m2 g-1) with relatively large pores (absence of micropores), graphitic character, and the presence of a fraction of the hydrophobic PTFE polymer on their surface (<20 wt %). The electrochemical characterization of Li-O2 cells using bare GDLs as the support indicates that the oxygen reduction reaction (ORR) occurs at potentials below 2.8 V vs Li+/Li, while the oxygen evolution reaction (OER) takes place at potentials higher than 3.6 V vs Li+/Li. Furthermore, the relatively high impedance of the Li-O2 cells at the pristine state remarkably decreases upon electrochemical activation achieved by voltammetry. The Li-O2 cells deliver high reversible capacities, ranging from ∼6 to ∼8 mA h cm-2 (referred to the geometric area of the GDLs). The Li-O2 battery performances are rationalized by the investigation of a practical Li+ diffusion coefficient (D) within the cell configuration adopted herein. The study reveals that D is higher during ORR than during OER, with values depending on the characteristics of the GDL and on the cell state of charge. Overall, D values range from ∼10-10 to ∼10-8 cm2 s-1 during the ORR and ∼10-17 to ∼10-11 cm2 s-1 during the OER. The most performing GDL is used as the support for the deposition of a substrate formed by few-layer graphene and multiwalled carbon nanotubes to improve the reaction in a Li-O2 cell operating with a maximum specific capacity of 1250 mA h g-1 (1 mA h cm-2) at a current density of 0.33 mA cm-2. XPS on the electrode tested in our Li-O2 cell setup suggests the formation of a stable solid electrolyte interphase at the surface which extends the cycle life.

3.
Chemistry ; 29(45): e202301345, 2023 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-37203374

RÉSUMÉ

A solid polymer electrolyte has been developed and employed in lithium-metal batteries of relevant interest. The material includes crystalline poly(ethylene glycol)dimethyl ether (PEGDME), LiTFSI and LiNO3 salts, and a SiO2 ceramic filler. The electrolyte shows ionic conductivity more than 10-4  S cm-1 at room temperature and approaching 10-3  S cm-1 at 60 °C, a Li+ -transference number exceeding 0.3, electrochemical stability from 0 to 4.4 V vs. Li+ /Li, lithium stripping/deposition overvoltage below 0.08 V, and electrode/electrolyte interphase resistance of 400 Ω. Thermogravimetry indicates that the electrolyte stands up to 200 °C without significant weight loss, while FTIR spectroscopy suggests that the LiTFSI conducting salt dissolves in the polymer. The electrolyte is used in solid-state cells with various cathodes, including LiFePO4 olivine exploiting the Li-insertion, sulfur-carbon composite operating through Li conversion, and an oxygen electrode in which reduction and evolution reactions (i. e., ORR/OER) evolve on a carbon-coated gas diffusion layer (GDL). The cells operate reversibly at room temperature with a capacity of 140 mA h g-1 at 3.4 V for LiFePO4 , 400 mA h g-1 at 2 V for sulfur electrode, and 500 mA h g-1 at 2.5 V for oxygen. The results suggest that the electrolyte could be applied in room-temperature solid polymer cells.

4.
ChemSusChem ; 16(6): e202202095, 2023 Mar 22.
Article de Anglais | MEDLINE | ID: mdl-36562306

RÉSUMÉ

Diffusion processes at the electrode/electrolyte interphase drives the performance of lithium-sulfur batteries, and activated carbon (AC) can remarkably vehicle ions and polysulfide species throughout the two-side liquid/solid region of the interphase. We reveal original findings such as the values of the diffusion coefficient at various states of charge of a Li-S battery using a highly porous AC, its notable dependence on the adopted techniques, and the correlation of the diffusion trend with the reaction mechanism. X-ray photoelectron spectroscopy (XPS) and X-ray energy dispersive spectroscopy (EDS) are used to identify in the carbon derived from bioresidues heteroatoms such as N, S, O and P, which can increase the polarity of the C framework. The transport properties are measured by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic intermittent titration technique (GITT). The study reveals Li+ -diffusion coefficient (DLi + ) depending on the technique, and values correlated with the cell state of charge. EIS, CV, and GITT yield a DLi + within 10-7 -10-8  cm2 s-1 , 10-8 -10-9  cm2 s-1 , and 10-6 -10-12  cm2 s-1 , respectively, dropping down at the fully discharged state and increasing upon charge. GITT allows the evaluation of DLi + during the process and evidences the formation of low-conducting media upon discharge. The sulfur composite delivers in a Li-cell a specific capacity ranging from 1300 mAh g-1 at 0.1 C to 700 mAh g-1 at 2C with a S loading of 2 mg cm-2 , and from 1000 to 800 mAh g-1 at 0.2C when the S loading is raised to 6 mg cm-2 .

5.
Energy Fuels ; 36(16): 9321-9328, 2022 Aug 18.
Article de Anglais | MEDLINE | ID: mdl-36016761

RÉSUMÉ

Lithium-sulfur battery of practical interest requires thin-layer support to achieve acceptable volumetric energy density. However, the typical aluminum current collector of Li-ion battery cannot be efficiently used in the Li/S system due to the insulating nature of sulfur and a reaction mechanism involving electrodeposition of dissolved polysulfides. We study the electrochemical behavior of a Li/S battery using a carbon-coated Al current collector in which the low thickness, the high electronic conductivity, and, at the same time, the host ability for the reaction products are allowed by a binder-free few-layer graphene (FLG) substrate. The FLG enables a sulfur electrode having a thickness below 100 µm, fast kinetics, low impedance, and an initial capacity of 1000 mAh gS -1 with over 70% retention after 300 cycles. The Li/S cell using FLG shows volumetric and gravimetric energy densities of 300 Wh L-1 and 500 Wh kg-1, respectively, which are values well competing with commercially available Li-ion batteries.

6.
Small Methods ; 5(10): e2100596, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-34927950

RÉSUMÉ

The degradation mechanism in a sodium cell of a layered Na0.48 Al0.03 Co0.18 Ni0.18 Mn0.47 O2 (NCAM) cathode with P3/P2 structure is investigated by revealing the changes in microstructure and composition upon cycling. The work aims to rationalize the gradual performance decay and the alteration of the electrochemical response in terms of polarization, voltage signature, and capacity loss. Spatial reconstructions of the electrode by X-ray computed tomography at the nanoscale supported by quantitative and qualitative analyses show fractures and deformations in the cycled layered metal-oxide particles, as well as inorganic side compounds deposited on the material. These irreversible morphological modifications reflect structural heterogeneities across the cathode particles due to formation of various domains with different Na+ intercalation degrees. Besides, X-ray photoelectron spectroscopy data suggest that the latter inorganic species in the cycled electrode are mainly composed of NaF, Na2 O, and NaCO3 formed by parasitic electrolyte decomposition. The precipitation of these insulating compounds at the electrode/electrolyte interphase and the related structural stresses induced in the material lead to a decrease in cathode particle size and partial loss of electrochemical activity. The retention of the NCAM phase after cycling suggests that electrolyte upgrade may improve the performance of the cathode to achieve practical application for sustainable energy storage.

7.
ACS Appl Energy Mater ; 4(8): 8340-8349, 2021 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-34476350

RÉSUMÉ

A Li-conversion α-Fe2O3@C nanocomposite anode and a high-voltage LiNi0.5Mn1.5O4 cathode are synthesized in parallel, characterized, and combined in a Li-ion battery. α-Fe2O3@C is prepared via annealing of maghemite iron oxide and sucrose under an argon atmosphere and subsequent oxidation in air. The nanocomposite exhibits a satisfactory electrochemical response in a lithium half-cell, delivering almost 900 mA h g-1, as well as a significantly longer cycle life and higher rate capability compared to the bare iron oxide precursor. The LiNi0.5Mn1.5O4 cathode, achieved using a modified co-precipitation approach, reveals a well-defined spinel structure without impurities, a sub-micrometrical morphology, and a reversible capacity of ca. 120 mA h g-1 in a lithium half-cell with an operating voltage of 4.8 V. Hence, a lithium-ion battery is assembled by coupling the α-Fe2O3@C anode with the LiNi0.5Mn1.5O4 cathode. This cell operates at about 3.2 V, delivering a stable capacity of 110 mA h g-1 (referred to the cathode mass) with a Coulombic efficiency exceeding 97%. Therefore, this cell is suggested as a promising energy storage system with expected low economic and environmental impacts.

8.
Energy Fuels ; 35(12): 10284-10292, 2021 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-34276126

RÉSUMÉ

Lithium-metal batteries employing concentrated glyme-based electrolytes and two different cathode chemistries are herein evaluated in view of a safe use of the highly energetic alkali-metal anode. Indeed, diethylene-glycol dimethyl-ether (DEGDME) and triethylene-glycol dimethyl-ether (TREGDME) dissolving lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium nitrate (LiNO3) in concentration approaching the solvents saturation limit are used in lithium batteries employing either a conversion sulfur-tin composite (S:Sn 80:20 w/w) or a Li+ (de)insertion LiFePO4 cathode. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) clearly show the suitability of the concentrated electrolytes in terms of process reversibility and low interphase resistance, particularly upon a favorable activation. Galvanostatic measurements performed on lithium-sulfur (Li/S) batteries reveal promising capacities at room temperature (25 °C) and a value as high as 1300 mAh gS -1 for the cell exploiting the DEGDME-based electrolyte at 35 °C. On the other hand, the lithium-LiFePO4 (Li/LFP) cells exhibit satisfactory cycling behavior, in particular when employing an additional reduction step at low voltage cutoff (i.e., 1.2 V) during the first discharge to consolidate the solid electrolyte interphase (SEI). This procedure allows a Coulombic efficiency near 100%, a capacity approaching 160 mAh g-1, and relevant retention particularly for the cell using the TREGDME-based electrolyte. Therefore, this work suggests the use of concentrated glyme-based electrolytes, the fine-tuning of the operative conditions, and the careful selection of active materials chemistry as significant steps to achieve practical and safe lithium-metal batteries.

9.
ChemSusChem ; 14(16): 3333-3343, 2021 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-34165920

RÉSUMÉ

A full lithium-ion-sulfur cell with a remarkable cycle life was achieved by combining an environmentally sustainable biomass-derived sulfur-carbon cathode and a pre-lithiated silicon oxide anode. X-ray diffraction, Raman spectroscopy, energy dispersive spectroscopy, and thermogravimetry of the cathode evidenced the disordered nature of the carbon matrix in which sulfur was uniformly distributed with a weight content as high as 75 %, while scanning and transmission electron microscopy revealed the micrometric morphology of the composite. The sulfur-carbon electrode in the lithium half-cell exhibited a maximum capacity higher than 1200 mAh gS -1 , reversible electrochemical process, limited electrode/electrolyte interphase resistance, and a rate capability up to C/2. The material showed a capacity decay of about 40 % with respect to the steady-state value over 100 cycles, likely due to the reaction with the lithium metal of dissolved polysulfides or impurities including P detected in the carbon precursor. Therefore, the replacement of the lithium metal with a less challenging anode was suggested, and the sulfur-carbon composite was subsequently investigated in the full lithium-ion-sulfur battery employing a Li-alloying silicon oxide anode. The full-cell revealed an initial capacity as high as 1200 mAh gS -1 , a retention increased to more than 79 % for 100 galvanostatic cycles, and 56 % over 500 cycles. The data reported herein well indicated the reliability of energy storage devices with extended cycle life employing high-energy, green, and safe electrode materials.

10.
J Colloid Interface Sci ; 573: 396-408, 2020 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-32304949

RÉSUMÉ

Disordered carbons derived from biomass are herein efficiently used as an alternative anode in lithium-ion battery. Carbon precursor obtained from cherry pit is activated by using either KOH or H3PO4, to increase the specific surface area and enable porosity. Structure, morphology and chemical characteristics of the activated carbons are investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetry (TG), Raman spectroscopy, nitrogen and mercury porosimetry. The electrodes are studied in lithium half-cell by galvanostatic cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The study evidences substantial effect of chemical activation on the carbon morphology, electrode resistance, and electrochemical performance. The materials reveal the typical profile of disordered carbon with initial irreversibility vanishing during cycles. Carbons activated by H3PO4 show higher capacity at the lower C-rates, while those activated by KOH reveal improved reversible capacity at the high currents, with efficiency approaching 100% upon initial cycles, and reversible capacity exceeding 175 mAh g-1. Therefore, the carbons and LiFePO4 cathode are combined in lithium-ion cells delivering 160 mAh g-1 at 2.8 V, with a retention exceeding 95% upon 200 cycles at C/3 rate. Hence, the carbons are suggested as environmentally sustainable anode for Li-ion battery.


Sujet(s)
Carbone/composition chimique , Alimentations électriques , Lithium/composition chimique , Biomasse , Électrodes , Taille de particule , Propriétés de surface
11.
ChemSusChem ; 12(15): 3550-3561, 2019 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-31169357

RÉSUMÉ

Herein, a nanometric CuO anode for lithium-ion batteries was investigated by combining electrochemical measurements and ex situ X-ray computed tomography (CT) at the nanoscale. The electrode reacted by conversion at about 1.2 and 2.4 V versus Li+ /Li during discharge and charge, respectively, to deliver a capacity ranging from 500 mAh g-1 to over 600 mAh g-1 . Three-dimensional nano-CT imaging revealed substantial reorganization of the CuO particles and precipitation of a Li+ -conducting film suitable for a possible application in the battery. A lithium-ion cell, exploiting the high capacity of the conversion process, was assembled by using a high-performance LiNi0.33 Co0.33 Mn0.33 O2 cathode reacting at 3.9 V versus Li+ /Li. The cell was proposed as an energy-storage system with an average working voltage of about 2.5 V, specific capacity of 170 mAh gcathode -1 , and efficiency exceeding 99 % with a very stable cycling.

12.
ACS Appl Mater Interfaces ; 10(19): 16367-16375, 2018 May 16.
Article de Anglais | MEDLINE | ID: mdl-29676560

RÉSUMÉ

The lithium oxygen battery has a theoretical energy density potentially meeting the challenging requirements of electric vehicles. However, safety concerns and short lifespan hinder its application in practical systems. In this work, we show a cell configuration, including a multiwalled carbon nanotube electrode and a low flammability glyme electrolyte, capable of hundreds of cycles without signs of decay. Nuclear magnetic resonance and electrochemical tests confirm the suitability of the electrolyte in a practical battery, whereas morphological and structural aspects revealed by electron microscopy and X-ray diffraction demonstrate the reversible formation and dissolution of lithium peroxide during the electrochemical process. The enhanced cycle life of the cell and the high safety of the electrolyte suggest the lithium oxygen battery herein reported as a viable system for the next generation of high-energy applications.

13.
ChemSusChem ; 11(9): 1512-1520, 2018 May 09.
Article de Anglais | MEDLINE | ID: mdl-29493106

RÉSUMÉ

An efficient lithium-ion battery was assembled by using an enhanced sulfur-based cathode and a silicon oxide-based anode and proposed as an innovative energy-storage system. The sulfur-carbon composite, which exploits graphene carbon with a 3 D array (3DG-S), was synthesized by a reduction step through a microwave-assisted solvothermal technique and was fully characterized in terms of structure and morphology, thereby revealing suitable features for lithium-cell application. Electrochemical tests of the 3DG-S electrode in a lithium half-cell indicated a capacity ranging from 1200 to 1000 mAh g-1 at currents of C/10 and 1 C, respectively. Remarkably, the Li-alloyed anode, namely, Liy SiOx -C prepared by the sol-gel method and lithiated by surface treatment, showed suitable performance in a lithium half-cell by using an electrolyte designed for lithium-sulfur batteries. The Liy SiOx -C/3DG-S battery was found to exhibit very promising properties with a capacity of approximately 460 mAh gS-1 delivered at an average voltage of approximately 1.5 V over 200 cycles, suggesting that the characterized materials would be suitable candidates for low-cost and high-energy-storage applications.

14.
Chemistry ; 24(13): 3178-3185, 2018 Mar 02.
Article de Anglais | MEDLINE | ID: mdl-29244897

RÉSUMÉ

Cathode configurations reported herein are alternative to the most diffused ones for application in lithium-oxygen batteries, using an ionic liquid-based electrolyte. The electrodes employ high surface area conductive carbon as the reaction host, and polytetrafluoroethylene as the binding agent to enhance the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) reversibility. Roll-pressed, self-standing electrodes (SSEs) and thinner, spray deposited electrodes (SDEs) are characterized in lithium-oxygen cells using an ionic liquid (IL) based electrolyte formed by mixing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt and N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethanesulfonyl)imide (DEMETFSI). The electrochemical results reveal reversible reactions for both electrode configurations, but improved electrochemical performance for the self-standing electrodes in lithium-oxygen cells. These electrodes show charge/discharge polarizations at 60 °C limited to 0.4 V, with capacity up to 1 mAh cm-2 and energy efficiency of about 88 %, while the spray deposited electrodes reveal, under the same conditions, a polarization of 0.6 V and energy efficiency of 80 %. The roll pressed electrode combined with the DEMETFSI-LiTFSI electrolyte and a composite Lix Sn-C alloy anode forms a full Li-ion oxygen cell showing extremely limited polarization, and remarkable energy efficiency.

15.
ChemSusChem ; 11(1): 229-236, 2018 01 10.
Article de Anglais | MEDLINE | ID: mdl-28960847

RÉSUMÉ

The room-temperature molten salt mixture of N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethanesulfonyl) imide ([DEME][TFSI]) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is herein reported as electrolyte for application in Li-O2 batteries. The [DEME][TFSI]-LiTFSI solution is studied in terms of ionic conductivity, viscosity, electrochemical stability, and compatibility with lithium metal at 30 °C, 40 °C, and 60 °C. The electrolyte shows suitable properties for application in Li-O2 battery, allowing a reversible, low-polarization discharge-charge performance with a capacity of about 13 Ah g-1carbon in the positive electrode and coulombic efficiency approaching 100 %. The reversibility of the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) is demonstrated by ex situ XRD and SEM studies. Furthermore, the study of the cycling behavior of the Li-O2 cell using the [DEME][TFSI]-LiTFSI electrolyte at increasing temperatures (from 30 to 60 °C) evidences enhanced energy efficiency together with morphology changes of the deposited species at the working electrode. In addition, the use of carbon-coated Zn0.9 Fe0.1 O (TMO-C) lithium-conversion anode in an ionic-liquid-based Li-ion/oxygen configuration is preliminarily demonstrated.


Sujet(s)
Alimentations électriques , Électrolytes/composition chimique , Éthers/composition chimique , Liquides ioniques/composition chimique , Composés du lithium/composition chimique , Oxygène/composition chimique , Conductivité électrique , Techniques électrochimiques/méthodes , Microscopie électronique à balayage
16.
ACS Omega ; 3(8): 8583-8588, 2018 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-31458987

RÉSUMÉ

Ionic liquids (ILs) represent the most suitable electrolyte media for a safe application in high-energy lithium metal batteries because of their remarkable thermal stability promoted by the room-temperature molten salt nature. In this work, we exploit this favorable characteristic by combining a pyrrolidinium-based electrolyte and a LiFe0.5Mn0.5PO4 mixed olivine cathode in a lithium metal cell. The IL solution, namely N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) dissolving LiTFSI, is designed as viscous electrolyte, particularly suited for cells operating at temperatures higher than 40 °C, as demonstrated by electrochemical impedance spectroscopy. The olivine electrode, characterized by remarkable structural stability at high temperature, is studied in the lithium metal cell using the Pyr14TFSI-LiTFSI medium above the room temperature. The Li/Pyr14TFSI-LiTFSI/LiFe0.5Mn0.5PO4 cell delivers a capacity of about 100 mA h g-1 through two voltage plateaus at about 3.5 and 4.1 V, ascribed to the iron and manganese redox reaction, respectively. The cycling stability, satisfactory levels of the energy density, and a relevant safety content suggest the cell studied herein as a viable energy storage system for future applications.

17.
ACS Appl Mater Interfaces ; 9(28): 23723-23730, 2017 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-28627876

RÉSUMÉ

We report a highly performing anode material for sodium-ion batteries (SIBs) composed of graphene decorated by indium sulfide (In2S3). The composite is synthesized by a facile hydrothermal pathway with subsequent annealing and is characterized by defined structure and well-tailored morphology, as is indeed demonstrated by X-ray diffraction and spectroscopy as well as high-resolution microscopy. These optimal characteristics allow the electrode to perform remarkably in sodium cell by achieving a maximum specific capacity as high as 620 mAh g-1 and the still-relevant value of 335 mAh g-1 at an extremely high current (i.e., 5 A g-1). The high storage capacity, the long cycle life, and the impressive rate capability of the composite may be attributed to the synergetic effect between uniform In2S3 nanoparticles and the graphene matrix. These features suggest that the In2S3-graphene is a viable choice for application as an anode material in high-performance SIBs.

18.
ACS Appl Mater Interfaces ; 9(20): 17085-17095, 2017 May 24.
Article de Anglais | MEDLINE | ID: mdl-28440629

RÉSUMÉ

Triethylene glycol dimethyl ether (TREGDME) dissolving lithium trifluoromethanesulfonate (LiCF3SO3) is studied as a suitable electrolyte medium for lithium battery. Thermal and rheological characteristics, transport properties of the dissolved species, and the electrochemical behavior in lithium cell represent the most relevant investigated properties of the new electrolyte. The self-diffusion coefficients, the lithium transference numbers, the ionic conductivity, and the ion association degree of the solution are determined by pulse field gradient nuclear magnetic resonance and electrochemical impedance spectroscopy. The study sheds light on the determinant role of the lithium nitrate (LiNO3) addition for allowing cell operation by improving the electrode/electrolyte interfaces and widening the voltage stability window. Accordingly, an electrochemical activation procedure of the Li/LiFePO4 cell using the upgraded electrolyte leads to the formation of stable interfaces at the electrodes surface as clearly evidenced by cyclic voltammetry, impedance spectroscopy, and ex situ scanning electron microscopy. Therefore, the lithium battery employing the TREGDME-LiCF3SO3-LiNO3 solution shows a stable galvanostatic cycling, a high efficiency, and a notable rate capability upon the electrochemical conditions adopted herein.

19.
ChemSusChem ; 10(7): 1607-1615, 2017 04 10.
Article de Anglais | MEDLINE | ID: mdl-28074612

RÉSUMÉ

A ternary CuO-Fe2 O3 -mesocarbon microbeads (MCMB) conversion anode was characterized and combined with a high-voltage Li1.35 Ni0.48 Fe0.1 Mn1.72 O4 spinel cathode in a lithium-ion battery of relevant performance in terms of cycling stability and rate capability. The CuO-Fe2 O3 -MCMB composite was prepared by using high-energy milling, a low-cost pathway that leads to a crystalline structure and homogeneous submicrometrical morphology as revealed by XRD and electron microscopy. The anode reversibly exchanges lithium ions through the conversion reactions of CuO and Fe2 O3 and by insertion into the MCMB carbon. Electrochemical tests, including impedance spectroscopy, revealed a conductive electrode/electrolyte interface that enabled the anode to achieve a reversible capacity value higher than 500 mAh g-1 when cycled at a current of 120 mA g-1 . The remarkable stability of the CuO-Fe2 O3 -MCMB electrode and the suitable characteristics in terms of delivered capacity and voltage-profile retention allowed its use in an efficient full lithium-ion cell with a high-voltage Li1.35 Ni0.48 Fe0.1 Mn1.72 O4 cathode. The cell had a working voltage of 3.6 V and delivered a capacity of 110 mAh gcathode-1 with a Coulombic efficiency above 99 % after 100 cycles at 148 mA gcathode-1 . This relevant performances, rarely achieved by lithium-ion systems that use the conversion reaction, are the result of an excellent cell balance in terms of negative-to-positive ratio, favored by the anode composition and electrochemical features.


Sujet(s)
Oxyde d'aluminium/composition chimique , Cuivre/composition chimique , Alimentations électriques , Composés du fer III/composition chimique , Lithium/composition chimique , Oxyde de magnésium/composition chimique , Microsphères , Électrodes , Technologie de la chimie verte
20.
New J Chem ; 40(3): 2935-2943, 2016 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-27182193

RÉSUMÉ

A novel, low cost and environmentally sustainable lithium sulfide-carbon composite cathode, suitably prepared by combining polyethylene oxide (PEO), LiCF3SO3 and Li2S-C powders is here presented. The cathode is characterized in lithium-metal cell employing a solution of LiCF3SO3 salt in dioxolane-dimethylether (DOL-DME) as the electrolyte. Detailed NMR investigation of the diffusion properties of the electrolyte is reported in order to determine its suitability for the proposed cell. The addition of LiNO3 to the electrolyte solution allows practical application in a lithium sulfur cell using the Li2S-C-based cathode characterized by a specific capacity of about 500 mAh g-1 (as referenced to the Li2S mass). The cell holds its optimal performances for over 70 cycles at C/5 rate, with a steady state efficiency approaching 99%. X-ray diffraction patterns of the cell upon operation suggest the reversibility of the Li2S electrochemical process, while repeated electrochemical impedance spectroscopy (EIS) measurements indicate the suitability of the electrode-electrolyte interface in terms of low and stable cell impedance. Furthermore, the EIS study clarifies the activation process occurring at the Li2S cathode during the first charge process, leading to the decrease of the cell polarization during the following cycles. The data here reported shed light on important aspects to be considered for the efficient application of the Li2S cathode in lithium battery.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE