Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Acta Med Okayama ; 71(4): 325-332, 2017 Aug.
Article de Anglais | MEDLINE | ID: mdl-28824188

RÉSUMÉ

We conducted a survey of glucose-6-phosphate dehydrogenase (G6PD) deficiency among newborn babies at Tu Du Hospital, Ho Chi Minh, southern Vietnam. A total of 90 deficient babies were detected, including 85 in the Kinh ethnic group, 4 Chinese, and 1 in the K'Ho minority group. In the Kinh ethnic group, G6PD variants such as G6PD Viangchan (n=32), Kaiping (n=11), Canton (n=8), Chinese-5 (n=7), Union (n=5) and Quing Yuan (n=4) were detected. A variant with silent mutations at 1311 C>T and IVS11 nt 93 T>C was also detected in 17 cases. A novel mutation (173 A>G) in exon 4 with a predicted amino acid change of 58 Asp>Gly was also found in a Kinh newborn girl and her father, and it was designated as G6PD Ho Chi Minh. These findings demonstrated that the Kinh ethnic group in southern Vietnam has 8 different G6PD variants, indicating that the members of this group have many ancestors in terms of G6PD variants from Southeast Asia, China, and Oceania. We compared the frequency distribution of G6PD variants in the Kinh population with those of other Southeast Asian populations, and the Kinh population's distribution was quite similar to that in the Thai population, but differed from it by the absence of G6PD Mahidol.


Sujet(s)
Variation génétique/génétique , Déficit en glucose-6-phosphate-déshydrogénase/épidémiologie , Déficit en glucose-6-phosphate-déshydrogénase/génétique , Glucose 6-phosphate dehydrogenase/génétique , Glucose 6-phosphate dehydrogenase/métabolisme , Démographie , Ethnies , Déficit en glucose-6-phosphate-déshydrogénase/ethnologie , Humains , Vietnam/épidémiologie
2.
Biosci Microbiota Food Health ; 31(2): 27-36, 2012.
Article de Anglais | MEDLINE | ID: mdl-24936346

RÉSUMÉ

Complexing of green tea catechins with food constituents and their hydrolysis by tannase-producing Lactobacillus plantarum strains, were investigated. Our observations indicated that 1) epigallocatechin gallate (EGCg) and other catechin galloyl esters bound with food ingredients (i.e., proteins) to form a complex that is likely to be unabsorbable through the intestinal wall, whereas most catechins not esterified with gallic acid (GA) remain in free form, not complexing with food ingredients; 2) tannase activity of L. plantarum is strain dependent, possibly grouped into those with high tannase activity hydrolyzing EGCg to epigallocatechin and GA and those with the low activity; and 3) L. plantarum strains with high tannase activity are capable of hydrolyzing not only intact EGCg but also EGCg and other catechin galloyl esters complexed with dietary proteins to free non-galloyl ester catechins and GA. The evidence suggests that L. plantarum with high tannase activity, if it colonizes the human intestine, would release free non-galloyl-ester catechins and GA that are readily absorbed through the human intestinal epithelia from the complexes, thereby ensuring maximum delivery of the bioactive polyphenols of green tea to the host.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE