Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 146
Filtrer
1.
Front Immunol ; 15: 1382689, 2024.
Article de Anglais | MEDLINE | ID: mdl-38895116

RÉSUMÉ

Osteoarthritis (OA) is a common joint disorder characterized by the degeneration of cartilage and inflammation, affecting millions worldwide. The disease's complex pathogenesis involves various cell types, such as chondrocytes, synovial cells, osteoblasts, and immune cells, contributing to the intricate interplay of factors leading to tissue degradation and pain. RNA interference (RNAi) therapy, particularly through the use of small interfering RNA (siRNA), emerges as a promising avenue for OA treatment due to its capacity for specific gene silencing. siRNA molecules can modulate post-transcriptional gene expression, targeting key pathways involved in cellular proliferation, apoptosis, senescence, autophagy, biomolecule secretion, inflammation, and bone remodeling. This review delves into the mechanisms by which siRNA targets various cell populations within the OA milieu, offering a comprehensive overview of the potential therapeutic benefits and challenges in clinical application. By summarizing the current advancements in siRNA delivery systems and therapeutic targets, we provide a solid theoretical foundation for the future development of novel siRNA-based strategies for OA diagnosis and treatment, paving the way for innovative and more effective approaches to managing this debilitating disease.


Sujet(s)
Arthrose , Petit ARN interférent , Humains , Arthrose/thérapie , Arthrose/génétique , Petit ARN interférent/usage thérapeutique , Petit ARN interférent/génétique , Animaux , Interférence par ARN , Chondrocytes/métabolisme , Transduction du signal
2.
Front Immunol ; 15: 1409555, 2024.
Article de Anglais | MEDLINE | ID: mdl-38915408

RÉSUMÉ

Rheumatoid arthritis (RA) is an autoimmune disease causing progressive joint damage. Early diagnosis and treatment is critical, but remains challenging due to RA complexity and heterogeneity. Machine learning (ML) techniques may enhance RA management by identifying patterns within multidimensional biomedical data to improve classification, diagnosis, and treatment predictions. In this review, we summarize the applications of ML for RA management. Emerging studies or applications have developed diagnostic and predictive models for RA that utilize a variety of data modalities, including electronic health records, imaging, and multi-omics data. High-performance supervised learning models have demonstrated an Area Under the Curve (AUC) exceeding 0.85, which is used for identifying RA patients and predicting treatment responses. Unsupervised learning has revealed potential RA subtypes. Ongoing research is integrating multimodal data with deep learning to further improve performance. However, key challenges remain regarding model overfitting, generalizability, validation in clinical settings, and interpretability. Small sample sizes and lack of diverse population testing risks overestimating model performance. Prospective studies evaluating real-world clinical utility are lacking. Enhancing model interpretability is critical for clinician acceptance. In summary, while ML shows promise for transforming RA management through earlier diagnosis and optimized treatment, larger scale multisite data, prospective clinical validation of interpretable models, and testing across diverse populations is still needed. As these gaps are addressed, ML may pave the way towards precision medicine in RA.


Sujet(s)
Polyarthrite rhumatoïde , Apprentissage machine , Médecine de précision , Polyarthrite rhumatoïde/diagnostic , Polyarthrite rhumatoïde/thérapie , Humains , Médecine de précision/méthodes , Rhumatologie/méthodes , Prise en charge de la maladie
3.
J Microbiol Biotechnol ; 34(7): 1511-1521, 2024 Jul 28.
Article de Anglais | MEDLINE | ID: mdl-38934781

RÉSUMÉ

This study aimed to determine the function of LINC00511 in Nod-Like Receptor Pyrin Domain 3 inflammasome-mediated chondrocyte pyroptosis via the regulation of miR-9-5p and FUT 1. Chondrocyte inflammatory injury was induced by treating chondrocytes with LPS. Afterwards, the levels of IL-1ß and IL-18, the expression of NLRP3, ASC, Caspase-1, and GSDMD, cell viability, and LDH activity in chondrocytes were assessed. LINC00511 expression in LPS-treated chondrocytes was detected, and LINC00511 was subsequently silenced to analyse its role in chondrocyte pyroptosis. The subcellular localization of LINC00511 was predicted and verified. Furthermore, the binding relationships between LINC00511 and miR-9-5p and between miR-9-5p and FUT1 were validated. LINC00511 regulated NLRP3 inflammasome-mediated chondrocyte pyroptosis through the miR-9-5p/FUT1 axis. LPS-treated ATDC5 cells exhibited elevated levels of inflammatory injury; increased levels of NLRP3, ASC, Caspase-1, and GSDMD; reduced cell viability; increased LDH activity; and increased LINC00511 expression, while LINC00511 silencing inhibited the NLRP3 inflammasome to restrict LPS-induced chondrocyte pyroptosis. Next, LINC00511 sponged miR-9-5p, which targeted FUT1. Silencing LINC00511 suppressed FUT1 by upregulating miR-9-5p. Additionally, downregulation of miR-9-5p or overexpression of FUT1 neutralized the suppressive effect of LINC00511 knockdown on LPS-induced chondrocyte pyroptosis. Silencing LINC00511 inhibited the NLRP3 inflammasome to quench Caspase-1-dependent chondrocyte pyroptosis in OA by promoting miR-9-5p and downregulating FUT1.


Sujet(s)
Chondrocytes , Fucosyltransferases , microARN , Protéine-3 de la famille des NLR contenant un domaine pyrine , Pyroptose , ARN long non codant , Chondrocytes/métabolisme , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Protéine-3 de la famille des NLR contenant un domaine pyrine/génétique , microARN/génétique , microARN/métabolisme , ARN long non codant/génétique , ARN long non codant/métabolisme , Fucosyltransferases/génétique , Fucosyltransferases/métabolisme , Inflammasomes/métabolisme , Lipopolysaccharides , Humains , Lignée cellulaire , Animaux , Souris , Survie cellulaire , Interleukine-1 bêta/métabolisme , Interleukine-18/métabolisme , Interleukine-18/génétique , Caspase-1/métabolisme , Caspase-1/génétique
4.
Front Immunol ; 15: 1394108, 2024.
Article de Anglais | MEDLINE | ID: mdl-38799455

RÉSUMÉ

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent synovial inflammation and progressive joint destruction. Macrophages are key effector cells that play a central role in RA pathogenesis through their ability to polarize into distinct functional phenotypes. An imbalance favoring pro-inflammatory M1 macrophages over anti-inflammatory M2 macrophages disrupts immune homeostasis and exacerbates joint inflammation. Multiple signaling pathways, including Notch, JAK/STAT, NF-κb, and MAPK, regulate macrophage polarization towards the M1 phenotype in RA. Metabolic reprogramming also contributes to this process, with M1 macrophages prioritizing glycolysis while M2 macrophages utilize oxidative phosphorylation. Redressing this imbalance by modulating macrophage polarization and metabolic state represents a promising therapeutic strategy. Furthermore, complex bidirectional interactions exist between synovial macrophages and fibroblast-like synoviocytes (FLS), forming a self-perpetuating inflammatory loop. Macrophage-derived factors promote aggressive phenotypes in FLS, while FLS-secreted mediators contribute to aberrant macrophage activation. Elucidating the signaling networks governing macrophage polarization, metabolic adaptations, and crosstalk with FLS is crucial to developing targeted therapies that can restore immune homeostasis and mitigate joint pathology in RA.


Sujet(s)
Polyarthrite rhumatoïde , Fibroblastes , Activation des macrophages , Macrophages , Transduction du signal , Membrane synoviale , Humains , Polyarthrite rhumatoïde/métabolisme , Polyarthrite rhumatoïde/immunologie , Polyarthrite rhumatoïde/anatomopathologie , Macrophages/immunologie , Macrophages/métabolisme , Membrane synoviale/métabolisme , Membrane synoviale/immunologie , Membrane synoviale/anatomopathologie , Fibroblastes/métabolisme , Fibroblastes/immunologie , Animaux , Activation des macrophages/immunologie , Communication cellulaire/immunologie ,
5.
Bone Res ; 12(1): 31, 2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-38782893

RÉSUMÉ

Rheumatoid arthritis (RA) is an autoimmune disease. Early studies hold an opinion that gut microbiota is environmentally acquired and associated with RA susceptibility. However, accumulating evidence demonstrates that genetics also shape the gut microbiota. It is known that some strains of inbred laboratory mice are highly susceptible to collagen-induced arthritis (CIA), while the others are resistant to CIA. Here, we show that transplantation of fecal microbiota of CIA-resistant C57BL/6J mice to CIA-susceptible DBA/1J mice confer CIA resistance in DBA/1J mice. C57BL/6J mice and healthy human individuals have enriched B. fragilis than DBA/1J mice and RA patients. Transplantation of B. fragilis prevents CIA in DBA/1J mice. We identify that B. fragilis mainly produces propionate and C57BL/6J mice and healthy human individuals have higher level of propionate. Fibroblast-like synoviocytes (FLSs) in RA are activated to undergo tumor-like transformation. Propionate disrupts HDAC3-FOXK1 interaction to increase acetylation of FOXK1, resulting in reduced FOXK1 stability, blocked interferon signaling and deactivation of RA-FLSs. We treat CIA mice with propionate and show that propionate attenuates CIA. Moreover, a combination of propionate with anti-TNF etanercept synergistically relieves CIA. These results suggest that B. fragilis or propionate could be an alternative or complementary approach to the current therapies.


Sujet(s)
Arthrite expérimentale , Polyarthrite rhumatoïde , Microbiome gastro-intestinal , Histone deacetylases , Souris de lignée C57BL , Cellules synoviales , Animaux , Humains , Mâle , Souris , Arthrite expérimentale/anatomopathologie , Arthrite expérimentale/métabolisme , Polyarthrite rhumatoïde/métabolisme , Polyarthrite rhumatoïde/anatomopathologie , Polyarthrite rhumatoïde/traitement médicamenteux , Polyarthrite rhumatoïde/microbiologie , Fibroblastes/métabolisme , Fibroblastes/effets des médicaments et des substances chimiques , Facteurs de transcription Forkhead/métabolisme , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Histone deacetylases/métabolisme , Souris de lignée DBA , Transduction du signal/effets des médicaments et des substances chimiques , Cellules synoviales/métabolisme , Cellules synoviales/effets des médicaments et des substances chimiques , Cellules synoviales/anatomopathologie
6.
Immunotargets Ther ; 13: 259-271, 2024.
Article de Anglais | MEDLINE | ID: mdl-38770264

RÉSUMÉ

Psoriasis is a chronic inflammatory skin disease characterized by the excessive proliferation of keratinocytes and heightened immune activation. Targeting pathogenic genes through small interfering RNA (siRNA) therapy represents a promising strategy for the treatment of psoriasis. This mini-review provides a comprehensive summary of siRNA research targeting the pathogenesis of psoriasis, covering aspects such as keratinocyte function, inflammatory cell roles, preclinical animal studies, and siRNA delivery mechanisms. It details recent advancements in RNA interference that modulate key factors including keratinocyte proliferation (Fibroblast Growth Factor Receptor 2, FGFR2), apoptosis (Interferon Alpha Inducible Protein 6, G1P3), differentiation (Grainyhead Like Transcription Factor 2, GRHL2), and angiogenesis (Vascular Endothelial Growth Factor, VEGF); immune cell infiltration and inflammation (Tumor Necrosis Factor-Alpha, TNF-α; Interleukin-17, IL-17); and signaling pathways (JAK-STAT, Nuclear Factor Kappa B, NF-κB) that govern immunopathology. Despite significant advances in siRNA-targeted treatments for psoriasis, several challenges persist. Continued scientific developments promise the creation of more effective and safer siRNA medications, potentially enhancing the quality of life for psoriasis patients and revolutionizing treatments for other diseases. This article focuses on the most recent research advancements in targeting the pathogenesis of psoriasis with siRNA and explores its future therapeutic prospects.

7.
Int Immunopharmacol ; 131: 111860, 2024 Apr 20.
Article de Anglais | MEDLINE | ID: mdl-38508093

RÉSUMÉ

OBJECTIVES: Rheumatoid arthritis (RA) is a complex disease with a challenging diagnosis, especially in seronegative patients. The aim of this study is to investigate whether the methylation sites associated with the overall immune response in RA can assist in clinical diagnosis, using targeted methylation sequencing technology on peripheral venous blood samples. METHODS: The study enrolled 241 RA patients, 30 osteoarthritis patients (OA), and 30 healthy volunteers control (HC). Fifty significant cytosine guanine (CG) sites between undifferentiated arthritis and RA were selected and analyzed using targeted DNA methylation sequencing. Logistic regression models were used to establish diagnostic models for different clinical features of RA, and six machine learning methods (logit model, random forest, support vector machine, adaboost, naive bayes, and learning vector quantization) were used to construct clinical diagnostic models for different subtypes of RA. Least absolute shrinkage and selection operator regression and detrended correspondence analysis were utilized to screen for important CGs. Spearman correlation was used to calculate the correlation coefficient. RESULTS: The study identified 16 important CG sites, including tumor necrosis factort receptor associated factor 5 (TRAF5) (chr1:211500151), mothers against decapentaplegic homolog 3 (SMAD3) (chr15:67357339), tumor endothelial marker 1 (CD248) (chr11:66083766), lysosomal trafficking regulator (LYST) (chr1:235998714), PR domain zinc finger protein 16 (PRDM16) (chr1:3307069), A-kinase anchoring protein 10 (AKAP10) (chr17:19850460), G protein subunit gamma 7 (GNG7) (chr19:2546620), yes1 associated transcriptional regulator (YAP1) (chr11:101980632), PRDM16 (chr1:3163969), histone deacetylase complex subunit sin3a (SIN3A) (chr15:75747445), prenylated rab acceptor protein 2 (ARL6IP5) (chr3:69134502), mitogen-activated protein kinase kinase kinase 4 (MAP3K4) (chr6:161412392), wnt family member 7A (WNT7A) (chr3:13895991), inhibin subunit beta B (INHBB) (chr2:121107018), deoxyribonucleic acid replication helicase/nuclease 2 (DNA2) (chr10:70231628) and chromosome 14 open reading frame 180 (C14orf180) (chr14:105055171). Seven CG sites showed abnormal changes between the three groups (P < 0.05), and 16 CG sites were significantly correlated with common clinical indicators (P < 0.05). Diagnostic models constructed using different CG sites had an area under the receiver operating characteristic curve (AUC) range of 0.64-0.78 for high-level clinical indicators of high clinical value, with specificity ranging from 0.42 to 0.77 and sensitivity ranging from 0.57 to 0.88. The AUC range for low-level clinical indicators of high clinical value was 0.63-0.72, with specificity ranging from 0.48 to 0.74 and sensitivity ranging from 0.72 to 0.88. Diagnostic models constructed using different CG sites showed good overall diagnostic accuracy for the four subtypes of RA, with an accuracy range of 0.61-0.96, a balanced accuracy range of 0.46-0.94, and an AUC range of 0.46-0.94. CONCLUSIONS: This study identified potential clinical diagnostic biomarkers for RA and provided novel insights into the diagnosis and subtyping of RA. The use of targeted deoxyribonucleic acid (DNA) methylation sequencing and machine learning methods for establishing diagnostic models for different clinical features and subtypes of RA is innovative and can improve the accuracy and efficiency of RA diagnosis.


Sujet(s)
Polyarthrite rhumatoïde , Tumeurs , Arthrose , Femelle , Humains , Méthylation de l'ADN , Théorème de Bayes , Polyarthrite rhumatoïde/diagnostic , Polyarthrite rhumatoïde/génétique , Arthrose/diagnostic , Arthrose/génétique , Marqueurs biologiques , ADN , Tumeurs/génétique , Antigènes néoplasiques , Antigènes CD
8.
Nat Commun ; 15(1): 113, 2024 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-38168103

RÉSUMÉ

Mast cells are phenotypically and functionally heterogeneous, and their state is possibly controlled by local microenvironment. Therefore, specific analyses are needed to understand whether mast cells function as powerful participants or dispensable bystanders in specific diseases. Here, we show that degranulation of mast cells in inflammatory synovial tissues of patients with rheumatoid arthritis (RA) is induced via MAS-related G protein-coupled receptor X2 (MRGPRX2), and the expression of MHC class II and costimulatory molecules on mast cells are upregulated. Collagen-induced arthritis mice treated with a combination of anti-IL-17A and cromolyn sodium, a mast cell membrane stabilizer, show significantly reduced clinical severity and decreased bone erosion. The findings of the present study suggest that synovial microenvironment-influenced mast cells contribute to disease progression and may provide a further mast cell-targeting therapy for RA.


Sujet(s)
Polyarthrite rhumatoïde , Cellules synoviales , Humains , Souris , Animaux , Mastocytes/métabolisme , Polyarthrite rhumatoïde/métabolisme , Cellules synoviales/métabolisme , Membrane synoviale/métabolisme , Récepteurs couplés aux protéines G/génétique , Récepteurs couplés aux protéines G/métabolisme , Protéines de tissu nerveux/métabolisme , Récepteur aux neuropeptides/métabolisme
9.
Phys Chem Chem Phys ; 26(5): 4429-4436, 2024 Jan 31.
Article de Anglais | MEDLINE | ID: mdl-38240037

RÉSUMÉ

Most tough elastomer composites are reinforced by introducing sacrificial structures and fillers. Understanding the contribution of fillers and sacrificial bonds in elastomer composites to the energy dissipation is critical for the design of high-toughness materials. However, the energy dissipation mechanism in elastomer composites remains elusive. In this study, using a tearing test and time-temperature superposition, we investigate the effect of fillers and sacrificial bonds on the energy dissipation of elastomer composites consisting of poly(lipoic acid)/silver-coated Al fillers. We found that the fillers and sacrificial bonds mutually enhance both the intrinsic fracture energy and the bulk energy dissipation, and moreover the sacrificial bonds play a more important role in enhancing fracture toughness than the fillers. It is unreasonable to rely solely on the loss factor for bulk energy dissipation. The addition of sacrificial bonds results in a chain segment experiencing greater binding force compared to the addition of fillers. This suggests that the chain segment consumes more energy during its movement. By calculating the length of the Kuhn chain segment and the Kuhn number, it is evident that the addition of sacrificial bonds results in a greater binding force for the chain segment than the addition of fillers, and this enhanced binding force increases the energy consumption during the motion of the chain segment.

10.
Sci Total Environ ; 915: 170037, 2024 Mar 10.
Article de Anglais | MEDLINE | ID: mdl-38232856

RÉSUMÉ

Large missing sources of daytime atmospheric nitrous acid (HONO), a vital source of hydroxyl radicals (OH) through its photolysis, frequently exist in global coastal regions. In this study, ambient HONO and relevant species were measured at a coastal site in the Pearl River Delta (PRD), China, during October 2019. Relatively high concentrations (0.32 ± 0.19 ppbv) and daytime peaks at approximately 13:00 of HONO were observed, and HONO photolysis was found to be the dominant (55.5 %) source of the primary OH production. A budget analysis of HONO based on traditional sources suggested large unknown sources during the daytime (66.4 %), which had a significant correlation with the mass of coarse particles (PM2.5-10) and photolysis frequency (J(NO2)). When incorporating photolysis of the abundant nitrate measured in coarse particles with a reasonable enhancement factor relative to fine particles due to favorable aerosol conditions, the missing daytime sources of HONO could be fully compensated by coarse particles serving as the largest source at this coastal site. Our study revealed great potential of coarse particles as a strong daytime HONO source, which has been ignored before but can efficiently promote NOx recycling and thus significantly enhance atmospheric oxidation capacity.

11.
Front Mol Biosci ; 10: 1202371, 2023.
Article de Anglais | MEDLINE | ID: mdl-38046810

RÉSUMÉ

Objective: To investigate the potential association between Anoikis-related genes, which are responsible for preventing abnormal cellular proliferation, and rheumatoid arthritis (RA). Methods: Datasets GSE89408, GSE198520, and GSE97165 were obtained from the GEO with 282 RA patients and 28 healthy controls. We performed differential analysis of all genes and HLA genes. We performed a protein-protein interaction network analysis and identified hub genes based on STRING and cytoscape. Consistent clustering was performed with subgrouping of the disease. SsGSEA were used to calculate immune cell infiltration. Spearman's correlation analysis was employed to identify correlations. Enrichment scores of the GO and KEGG were calculated with the ssGSEA algorithm. The WGCNA and the DGIdb database were used to mine hub genes' interactions with drugs. Results: There were 26 differentially expressed Anoikis-related genes (FDR = 0.05, log2FC = 1) and HLA genes exhibited differential expression (P < 0.05) between the disease and control groups. Protein-protein interaction was observed among differentially expressed genes, and the correlation between PIM2 and RAC2 was found to be the highest; There were significant differences in the degree of immune cell infiltration between most of the immune cell types in the disease group and normal controls (P < 0.05). Anoikis-related genes were highly correlated with HLA genes. Based on the expression of Anoikis-related genes, RA patients were divided into two disease subtypes (cluster1 and cluster2). There were 59 differentially expressed Anoikis-related genes found, which exhibited significant differences in functional enrichment, immune cell infiltration degree, and HLA gene expression (P < 0.05). Cluster2 had significantly higher levels in all aspects than cluster1 did. The co-expression network analysis showed that cluster1 had 51 hub differentially expressed genes and cluster2 had 72 hub differentially expressed genes. Among them, three hub genes of cluster1 were interconnected with 187 drugs, and five hub genes of cluster2 were interconnected with 57 drugs. Conclusion: Our study identified a link between Anoikis-related genes and RA, and two distinct subtypes of RA were determined based on Anoikis-related gene expression. Notably, cluster2 may represent a more severe state of RA.

12.
Front Med (Lausanne) ; 10: 1244888, 2023.
Article de Anglais | MEDLINE | ID: mdl-38020103

RÉSUMÉ

Background: Czech dysplasia is a rare skeletal disorder with symptomatology including platyspondyly, brachydactyly of the third and fourth toes, and early-onset progressive pseudorheumatoid arthritis. The disorder segregates in an autosomal dominant fashion. A specific missense mutation (R275C, c.823C > T) in exon 13 of the COL2A1 gene has been identified in German and Japanese families. Case summary: We present the case of a Chinese woman diagnosed with Czech dysplasia (proband) who carried a variant in the COL2A1 gene. Whole-exome sequencing (WES) identified the COL2A1 missense mutation (R275C, c.823C > T) in close relatives of the proband who also exhibited the same disorder. Conclusion: This study is a thorough clinical and physiological description of Czech dysplasia in a Chinese patient.

13.
Front Pharmacol ; 14: 1282610, 2023.
Article de Anglais | MEDLINE | ID: mdl-38027004

RÉSUMÉ

Rheumatic and autoimmune diseases are a group of immune system-related disorders wherein the immune system mistakenly attacks and damages the body's tissues and organs. This excessive immune response leads to inflammation, tissue damage, and functional impairment. Therapeutic approaches typically involve medications that regulate immune responses, reduce inflammation, alleviate symptoms, and target specific damaged organs. Tripterygium wilfordii Hook. f., a traditional Chinese medicinal plant, has been widely studied in recent years for its application in the treatment of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis. Numerous studies have shown that preparations of Tripterygium wilfordii have anti-inflammatory, immunomodulatory, and immunosuppressive effects, which effectively improve the symptoms and quality of life of patients with autoimmune diseases, whereas the active metabolites of T. wilfordii have been demonstrated to inhibit immune cell activation, regulate the production of inflammatory factors, and modulate the immune system. However, although these effects contribute to reductions in inflammatory responses and the suppression of autoimmune reactions, as well as minimize tissue and organ damage, the underlying mechanisms of action require further investigation. Moreover, despite the efficacy of T. wilfordii in the treatment of autoimmune diseases, its toxicity and side effects, including its potential hepatotoxicity and nephrotoxicity, warrant a thorough assessment. Furthermore, to maximize the therapeutic benefits of this plant in the treatment of autoimmune diseases and enable more patients to utilize these benefits, efforts should be made to strengthen the regulation and standardized use of T. wilfordii.

14.
Front Pharmacol ; 14: 1306584, 2023.
Article de Anglais | MEDLINE | ID: mdl-38027031

RÉSUMÉ

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and joint damage. The signaling lymphocytic activation molecule (SLAMF) family of receptors are expressed on various hematopoietic and non-hematopoietic cells and can regulate both immune cell activation and cytokine production. Altered expression of certain SLAMF receptors contributes to aberrant immune responses in RA. In RA, SLAMF1 is upregulated on T cells and may promote inflammation by participating in immune cell-mediated responses. SLAMF2 and SLAMF4 are involved in regulating monocyte tumor necrosis factor production and promoting inflammation. SLAMF7 activates multiple inflammatory pathways in macrophages to drive inflammatory gene expression. SLAMF8 inhibition can reduce inflammation in RA by blocking ERK/MMPs signaling. Of note, there are differences in SLAMF receptor (SFR) expression between normal and arthritic joint tissues, suggesting a role as potential diagnostic biomarkers. This review summarizes recent advances on the roles of SLAMF receptors 1, 2, 4, 7, and 8 in RA pathogenesis. However, further research is needed to elucidate the mechanisms of SLAMF regulation of immune cells in RA. Understanding interactions between SLAMF receptors and immune cells will help identify selective strategies for targeting SLAMF signaling without compromising normal immunity. Overall, the SLAMF gene family holds promise as a target for precision medicine in RA, but additional investigation of the underlying immunological mechanisms is needed. Targeting SLAMF receptors presents opportunities for new diagnostic and therapeutic approaches to dampen damaging immune-mediated inflammation in RA.

15.
Front Immunol ; 14: 1189036, 2023.
Article de Anglais | MEDLINE | ID: mdl-37841256

RÉSUMÉ

Alterations in the composition or function of the gut microbiota are associated with the etiology of human diseases. Drug-microbiota interactions can affect drug bioavailability, effectiveness, and toxicity through various routes. For instance, the direct effect of microbial enzymes on drugs can either boost or diminish their efficacy. Thus, considering its wide range of metabolic capabilities, the gut microbiota is a promising target for pharmacological modulation. Furthermore, drugs can alter the microbiota and the mechanisms by which they interact with their host. Individual variances in microbial profiles can also contribute to the different host responses to various drugs. However, the influence of interactions between the gut microbiota and drugs on treatment efficacy remains poorly elucidated. In this review, we will discuss the impact of microbiota dysbiosis in the pathogenesis of rheumatoid arthritis (RA), and we will attempt to elucidate the crosstalk between the gut microbiota and disease-modifying anti-rheumatic drugs (DMARDs), with an emphasis on how drug-microbiota interactions affect the treatment efficacy in RA. We speculate that improved knowledge of these critical interactions will facilitate the development of novel therapeutic options that use microbial markers for predicting or optimizing treatment outcomes.


Sujet(s)
Antirhumatismaux , Polyarthrite rhumatoïde , Microbiome gastro-intestinal , Microbiote , Humains , Polyarthrite rhumatoïde/traitement médicamenteux , Polyarthrite rhumatoïde/étiologie , Antirhumatismaux/usage thérapeutique , Antirhumatismaux/pharmacologie , Résultat thérapeutique
16.
Nano Lett ; 23(14): 6673-6680, 2023 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-37428875

RÉSUMÉ

Thermal resistance at a soft/hard material interface plays an undisputed role in the development of electronic packaging, sensors, and medicine. Adhesion energy and phonon spectra match are two crucial parameters in determining the interfacial thermal resistance (ITR), but it is difficult to simultaneously achieve these two parameters in one system to reduce the ITR at the soft/hard material interface. Here, we report a design of an elastomer composite consisting of a polyurethane-thioctic acid copolymer and microscale spherical aluminum, which exhibits both high phonon spectra match and high adhesion energy (>1000 J/m2) with hard materials, thus leading to a low ITR of 0.03 mm2·K/W. We further develop a quantitative physically based model connecting the adhesion energy and ITR, revealing the key role the adhesion energy plays. This work serves to engineer the ITR at the soft/hard material interface from the aspect of adhesion energy, which will prompt a paradigm shift in the development of interface science.

17.
Immun Inflamm Dis ; 11(6): e902, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-37382265

RÉSUMÉ

OBJECTIVES: To assess the differences in circulating DNA methylation levels of CXCR5 between rheumatoid arthritis (RA) and osteoarthritis (OA) and healthy controls (HC), and the correlation of methylation changes with clinical characteristics of RA patients. METHODS: Peripheral blood samples were collected from 239 RA patients, 30 patients with OA, and 29 HC. Target region methylation sequencing to the promoter region of CXCR5 was achieved using MethylTarget. The methylation level of cg04537602 and methylation haplotype were compared among the three groups, and the correlation between methylation levels and clinical characteristics of RA patients was performed by Spearman's rank correlation analysis. RESULTS: The methylation level of cg04537602 was significantly higher in the peripheral blood of RA patients compared with OA patients (p = 1.3 × 10-3 ) and in the HC group (p = 5.5 × 10- 4 ). The sensitivity was enhanced when CXCR5 methylation level combined with rheumatoid factor and anti-cyclic citrullinated peptide with area under curve (AUC) of 0.982 (95% confidence interval 0.970-0.995). The methylation level of cg04537602 in RA was positively correlated with C-reactive protein (CRP) (r = .16, p = .01), and in RA patients aged 60 years and above, cg04537602 methylation levels were positively correlated with CRP (r = .31, p = 4.7 × 10- 4 ), tender joint count (r = .21, p = .02), visual analog scales score (r = .21, p = .02), Disease Activity Score in 28 joints (DAS28) using the CRP level DAS28-CRP (r = .27, p = 2.1 × 10- 3 ), and DAS28-ESR (r = .22, p = .01). We also observed significant differences of DNA methylation haplotypes in RA patients compared with OA patients and HC, which was consistent with single-loci-based CpG methylation measurement. CONCLUSION: The methylation level of CXCR5 was significantly higher in RA patients than in OA and HC, and correlated with the level of inflammation in RA patients, our study establishes a link between CXCR5 DNA methylation and clinical features that may help in the diagnosis and disease management of RA patients.


Sujet(s)
Polyarthrite rhumatoïde , Méthylation de l'ADN , Humains , Inflammation , Polyarthrite rhumatoïde/génétique , Aire sous la courbe , Autoanticorps , Récepteurs CXCR5/génétique
18.
Arthritis Rheumatol ; 75(11): 1947-1957, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37219934

RÉSUMÉ

OBJECTIVE: Previous studies have underlined the genetic susceptibility in the pathogenesis of palindromic rheumatism (PR), but the known PR loci only partially explain the disease's genetic background. We aimed to genetically identify PR by whole-exome sequencing (WES). METHODS: This multicenter prospective study was conducted in 10 Chinese specialized rheumatology centers between September 2015 and January 2020. WES was performed in 185 patients with PR and in 272 healthy controls. PR patients were divided into PR subgroups who were negative for anti-citrullinated protein antibody (ACPA-) and positive for ACPA (ACPA+) according to ACPA titer (cutoff value 20 IU/liter). We conducted whole-exome association analysis for the WES data. We used HLA imputation to type HLA genes. In addition, we used the polygenic risk score to measure the genetic correlations between PR and rheumatoid arthritis (RA) and the genetic correlations between ACPA- PR and ACPA+ PR. RESULTS: Among 185 patients with PR enrolled in our study, 50 patients (27.02%) were ACPA+ and 135 PR patients (72.98%) were ACPA-. We identified 8 novel loci (in the ACPA- PR group: ZNF503, RPS6KL1, HOMER3, HLA-DRA; in the ACPA+ PR group: RPS6KL1, TNPO2, WASH2P, FANK1) and 3 HLA alleles (in the ACPA- PR group: HLA-DRB1*0803 and HLA-DQB1; in the ACPA+ PR group: HLA-DPA1*0401) that were associated with PR and that surpassed genome-wide significance (P < 5 × 10-8 ). Furthermore, polygenic risk score analysis showed that PR and RA were not similar (R2 < 0.025), whereas ACPA+ PR and ACPA- PR showed a moderate genetic correlation (0.38 < R2 < 0.8). CONCLUSION: This study demonstrated the distinct genetic background between ACPA- and ACPA+ PR patients. Additionally, our findings strengthened that PR and RA were not genetically similar.


Sujet(s)
Polyarthrite rhumatoïde , Autoanticorps , Humains , Génotype , Profil génétique , , Études prospectives , Peptides cycliques , Polyarthrite rhumatoïde/génétique , Prédisposition génétique à une maladie , Chaines HLA-DRB1/génétique , Allèles
19.
Front Immunol ; 14: 1120519, 2023.
Article de Anglais | MEDLINE | ID: mdl-37063835

RÉSUMÉ

Ferroptosis, a novel type of regulated cell death mediated by iron-dependent lipid oxidation, was discovered a decade ago. Significant progress has been made in our knowledge of ferroptosis and immune dysfunction. This review covers recent advancements in the interaction of ferroptosis and the immune system, with an emphasis on autoimmune diseases. The critical regulators of ferroptosis are summarized in the context of reactive oxygen species biology, lipid metabolism, and iron homeostasis. The molecular crosstalk between ferroptosis and different immune cells is also highlighted. Future research is expected to yield new insights into the mechanisms governing ferroptosis and its potential therapeutic benefits in autoimmune diseases.


Sujet(s)
Maladies auto-immunes , Ferroptose , Humains , Fer/métabolisme , Maladies auto-immunes/étiologie , Espèces réactives de l'oxygène/métabolisme , Homéostasie
20.
Front Immunol ; 14: 1137918, 2023.
Article de Anglais | MEDLINE | ID: mdl-36875082

RÉSUMÉ

Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by chronic inflammation that affects synovial tissues of multiple joints. Granzymes (Gzms) are serine proteases that are released into the immune synapse between cytotoxic lymphocytes and target cells. They enter target cells with the help of perforin to induce programmed cell death in inflammatory and tumor cells. Gzms may have a connection with RA. First, increased levels of Gzms have been found in the serum (GzmB), plasma (GzmA, GzmB), synovial fluid (GzmB, GzmM), and synovial tissue (GzmK) of patients with RA. Moreover, Gzms may contribute to inflammation by degrading the extracellular matrix and promoting cytokine release. They are thought to be involved in RA pathogenesis and have the potential to be used as biomarkers for RA diagnosis, although their exact role is yet to be fully elucidated. The purpose of this review was to summarize the current knowledge regarding the possible role of the granzyme family in RA, with the aim of providing a reference for future research on the mechanisms of RA and the development of new therapies.


Sujet(s)
Polyarthrite rhumatoïde , Maladies auto-immunes , Humains , Granzymes , Inflammation , Membrane synoviale
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE