RÉSUMÉ
Dexmedetomidine (DEX) is known to provide neuroprotection against cerebral ischemia and reperfusion injury (CIRI), but the exact mechanisms remain unclear. This study was conducted to investigate whether DEX pretreatment conferred neuroprotection against CIRI by inhibiting neuroinflammation through the JAK2/STAT3 signaling pathway. Middle cerebral artery occlusion (MCAO) was performed to establish a cerebral ischemia/reperfusion (I/R) model. Specific-pathogen-free male Sprague-Dawley rats were randomly divided into Sham, I/R, DEX, DEX+IL-6, and AG490 (a selective inhibitor of JAK2) groups. The Longa score, TTC staining, and HE staining were used to evaluate brain damage. ELISA was used to exam levels of TNF-α. Western blotting was used to assess the levels of JAK2, phosphorylated-JAK2 (p-JAK2), STAT3, and phosphorylated-STAT3 (p-STAT3). Our results suggested that both pretreatment with DEX and AG490 decreased the Longa score and cerebral infarct areas following cerebral I/R. After treatment with IL-6, the effects of DEX on abrogating these pathological changes were reduced. HE staining revealed that I/R-induced neuronal pathological changes were attenuated by DEX application, consistent with the AG490 group. However, these effects of DEX were abolished by IL-6. Furthermore, TNF-α levels were significantly increased in the I/R group, accompanied by an increase in the levels of the p-JAK2 and p-STAT3. DEX and AG490 pretreatment down-regulated the expressions of TNF-α, p-JAK2, and p-STAT3. In contrast, the down-regulation of TNF-α, p-JAK2, and p-STAT3 induced by DEX was reversed by IL-6. Collectively, our results indicated that DEX pretreatment conferred neuroprotection against CIRI by inhibiting neuroinflammation via negatively regulating the JAK2/STAT3 signaling pathway.
Sujet(s)
Encéphalopathie ischémique , Dexmédétomidine , Lésion d'ischémie-reperfusion , Animaux , Apoptose , Encéphalopathie ischémique/complications , Dexmédétomidine/pharmacologie , Dexmédétomidine/usage thérapeutique , Interleukine-6/métabolisme , Kinase Janus-2/métabolisme , Kinase Janus-2/pharmacologie , Mâle , Maladies neuro-inflammatoires , Rats , Rat Sprague-Dawley , Lésion d'ischémie-reperfusion/complications , Lésion d'ischémie-reperfusion/traitement médicamenteux , Lésion d'ischémie-reperfusion/prévention et contrôle , Facteur de transcription STAT-3/métabolisme , Facteur de transcription STAT-3/pharmacologie , Facteur de nécrose tumorale alpha/métabolismeRÉSUMÉ
Dexmedetomidine (DEX) is known to provide neuroprotection against cerebral ischemia and reperfusion injury (CIRI), but the exact mechanisms remain unclear. This study was conducted to investigate whether DEX pretreatment conferred neuroprotection against CIRI by inhibiting neuroinflammation through the JAK2/STAT3 signaling pathway. Middle cerebral artery occlusion (MCAO) was performed to establish a cerebral ischemia/reperfusion (I/R) model. Specific-pathogen-free male Sprague-Dawley rats were randomly divided into Sham, I/R, DEX, DEX+IL-6, and AG490 (a selective inhibitor of JAK2) groups. The Longa score, TTC staining, and HE staining were used to evaluate brain damage. ELISA was used to exam levels of TNF-α. Western blotting was used to assess the levels of JAK2, phosphorylated-JAK2 (p-JAK2), STAT3, and phosphorylated-STAT3 (p-STAT3). Our results suggested that both pretreatment with DEX and AG490 decreased the Longa score and cerebral infarct areas following cerebral I/R. After treatment with IL-6, the effects of DEX on abrogating these pathological changes were reduced. HE staining revealed that I/R-induced neuronal pathological changes were attenuated by DEX application, consistent with the AG490 group. However, these effects of DEX were abolished by IL-6. Furthermore, TNF-α levels were significantly increased in the I/R group, accompanied by an increase in the levels of the p-JAK2 and p-STAT3. DEX and AG490 pretreatment down-regulated the expressions of TNF-α, p-JAK2, and p-STAT3. In contrast, the down-regulation of TNF-α, p-JAK2, and p-STAT3 induced by DEX was reversed by IL-6. Collectively, our results indicated that DEX pretreatment conferred neuroprotection against CIRI by inhibiting neuroinflammation via negatively regulating the JAK2/STAT3 signaling pathway.
RÉSUMÉ
To study the effect of small interfering RNA targeting metastasis-associated lung adenocarcinoma transcript1 (si-MALAT1) combining with curcumin on the invasion and migration abilities of human colon cancer SW480 cells, and to explore the involved molecular mechanism. The recombinant lentiviral vector expressing si-MALAT1 was constructed, and its titer was determined by gradient dilution method. The colon cancer SW480 cells with stable expression of si-MALAT1 was established, followed by treatment with curcumin at different concentrations. The effect of curcumin or si-MALAT1 alone and the combination of the two on the cell activity was detected by MTT assay. The cell invasion and migration abilities were detected by transwell and scratch-wound assay. The relative expression level of MALAT1 was detected by RT-qPCR. The protein expression was determined by Western blot analysis. The IC50 of curcumin alone was 77.69 mmol/L, which was 51.17 mol/L when combined with curcumin and random sequence. The IC50 of curcumin was 30.02 mmol/L when combined with si-MALAT1. The increased susceptibility multiples was 2.58. The wound healing rates were 30.9% and 67.5% after treatment with si-MALAT1 combined with curcumin for 24 hrs and 48 hrs, respectively. The numbers of invasion cells were 200±12, 162±13, 66±8, 53±4 and 16±3 after treatment with si-MALAT1 combined with curcumin for 48 hrs. The relative expression level of lncRNA-MALAT1 in the curcumin group was 68%, and the relative expression level of lncRNA-MALAT1 in si-MALAT1group was 56%, and that for the combination treatment group was about 21%. The protein expression levels of β- catenin, c-myc and cyclinD1 were significantly down-regulated upon treatment with certain concentration of si-MALAT1 alone or combined with curcumin.si-MALAT1 could significantly inhibit the invasion and migration of SW480 cells by enhancing the sensitivity of SW480 cells to curcumin. The mechanism involved mignt be related to the down-regulation of β-catenin, c-myc and cyclinD1 proteins.