Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 80
Filtrer
1.
Stem Cell Rev Rep ; 2024 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-38951308

RÉSUMÉ

Mutations in STAMBP have been well-established to cause congenital human microcephaly-capillary malformation (MIC-CAP) syndrome, a rare genetic disorder characterized by global developmental delay, severe microcephaly, capillary malformations, etc. Previous biochemical investigations and loss-of-function studies in mice have provided insights into the mechanism of STAMBP, however, it remains controversial how STAMBP deficiency leads to malformation of those affected tissues in patients. In this study, we investigated the function and underlying mechanism of STAMBP during neural differentiation of human embryonic stem cells (hESCs). We found that STAMBP is dispensable for the pluripotency maintenance or neural differentiation of hESCs. However, neural progenitor cells (NPCs) derived from STAMBP-deficient hESCs fail to be long-term maintained/expanded in vitro. We identified the anti-apoptotic protein CFLAR is down-regulated in those affected NPCs and ectopic expression of CFLAR rescues NPC defects induced by STAMBP-deficiency. Our study not only provides novel insight into the mechanism of neural defects in STAMBP mutant patients, it also indicates that the death receptor mediated apoptosis is an obstacle for long-term maintenance/expansion of NPCs in vitro thus counteracting this cell death pathway could be beneficial to the generation of NPCs in vitro.

2.
Alzheimers Res Ther ; 16(1): 109, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38750512

RÉSUMÉ

BACKGROUND: As one major symptom of Alzheimer's disease (AD), anterograde amnesia describes patients with an inability in new memory formation. The crucial role of the entorhinal cortex in forming new memories has been well established, and the neuropeptide cholecystokinin (CCK) is reported to be released from the entorhinal cortex to enable neocortical associated memory and long-term potentiation. Though several studies reveal that the entorhinal cortex and CCK are related to AD, it is less well studied. It is unclear whether CCK is a good biomarker or further a great drug candidate for AD. METHODS: mRNA expressions of CCK and CCK-B receptor (CCKBR) were examined in two mouse models, 3xTg AD and CCK knock-out (CCK-/-) mice. Animals' cognition was investigated with Morris water maze, novel object recognition test and neuroplasticity with in-vitro electrophysiological recording. Drugs were given intraperitoneally to animals to investigate the rescue effects on cognitive deficits, or applied to brain slices directly to explore the influence in inducement of long-term potentiation. RESULTS: Aged 3xTg AD mice exhibited reduced CCK mRNA expression in the entorhinal cortex but reduced CCKBR expression in the neocortex and hippocampus, and impaired cognition and neuroplasticity comparable with CCK-/- mice. Importantly, the animals displayed improved performance and enhanced long-term potentiation after the treatment of CCKBR agonists. CONCLUSIONS: Here we provide more evidence to support the role of CCK in learning and memory and its potential to treat AD. We elaborated on the rescue effect of a promising novel drug, HT-267, on aged 3xTg AD mice. Although the physiological etiology of CCK in AD still needs to be further investigated, this study sheds light on a potential pharmaceutical candidate for AD and dementia.


Sujet(s)
Maladie d'Alzheimer , Amnésie antérograde , Cholécystokinine , Modèles animaux de maladie humaine , Souris transgéniques , Récepteur de la cholécystokinine de type B , Animaux , Maladie d'Alzheimer/traitement médicamenteux , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/métabolisme , Souris , Récepteur de la cholécystokinine de type B/génétique , Récepteur de la cholécystokinine de type B/agonistes , Récepteur de la cholécystokinine de type B/déficit , Amnésie antérograde/traitement médicamenteux , Cholécystokinine/métabolisme , Cortex entorhinal/effets des médicaments et des substances chimiques , Cortex entorhinal/métabolisme , Mâle , Souris knockout , Souris de lignée C57BL , Potentialisation à long terme/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Hippocampe/effets des médicaments et des substances chimiques , Vieillissement/effets des médicaments et des substances chimiques
3.
J Neurochem ; 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38750623

RÉSUMÉ

Cholecystokinin (CCK) has been confirmed to be essential in NMDA-dependent long-term potentiation (LTP) at mouse cortical synapses. This paper has proven that CCK is necessary for LTP induced by high-frequency stimulation of mouse hippocampal synapses projected from the entorhinal cortex. We show that the subunit of the axonal NMDA receptor dominant modulates the activity-induced LTP by triggering pre-synaptic CCK release. A functional pre-synaptic NMDA receptor is required to induce LTP mediated by the axonal Ca2+ elevation and CCK exocytosis at CCK-specific neurons. Genetic depletion of the GluN1 subunit of NMDA receptors on CCK neurons, which projected from the entorhinal cortex largely abolished the axonal Ca2+ elevation and disturbed the secretion of CCK in hippocampus. These results demonstrate that activity-induced LTP at the hippocampal synapse is CCK-dependent, and CCK secretion from the axonal terminal is modulated by pre-synaptic NMDA receptors.

4.
Elife ; 132024 May 03.
Article de Anglais | MEDLINE | ID: mdl-38700136

RÉSUMÉ

Cholecystokinin (CCK) is an essential modulator for neuroplasticity in sensory and emotional domains. Here, we investigated the role of CCK in motor learning using a single pellet reaching task in mice. Mice with a knockout of Cck gene (Cck-/-) or blockade of CCK-B receptor (CCKBR) showed defective motor learning ability; the success rate of retrieving reward remained at the baseline level compared to the wildtype mice with significantly increased success rate. We observed no long-term potentiation upon high-frequency stimulation in the motor cortex of Cck-/- mice, indicating a possible association between motor learning deficiency and neuroplasticity in the motor cortex. In vivo calcium imaging demonstrated that the deficiency of CCK signaling disrupted the refinement of population neuronal activity in the motor cortex during motor skill training. Anatomical tracing revealed direct projections from CCK-expressing neurons in the rhinal cortex to the motor cortex. Inactivation of the CCK neurons in the rhinal cortex that project to the motor cortex bilaterally using chemogenetic methods significantly suppressed motor learning, and intraperitoneal application of CCK4, a tetrapeptide CCK agonist, rescued the motor learning deficits of Cck-/- mice. In summary, our results suggest that CCK, which could be provided from the rhinal cortex, may surpport motor skill learning by modulating neuroplasticity in the motor cortex.


Sujet(s)
Cholécystokinine , Apprentissage , Souris knockout , Cortex moteur , Aptitudes motrices , Plasticité neuronale , Animaux , Mâle , Souris , Cholécystokinine/métabolisme , Apprentissage/physiologie , Cortex moteur/physiologie , Cortex moteur/métabolisme , Cortex moteur/effets des médicaments et des substances chimiques , Aptitudes motrices/physiologie , Plasticité neuronale/physiologie , Plasticité neuronale/effets des médicaments et des substances chimiques
5.
Elife ; 132024 Mar 04.
Article de Anglais | MEDLINE | ID: mdl-38436304

RÉSUMÉ

The entorhinal cortex is involved in establishing enduring visuo-auditory associative memory in the neocortex. Here we explored the mechanisms underlying this synaptic plasticity related to projections from the visual and entorhinal cortices to the auditory cortex in mice using optogenetics of dual pathways. High-frequency laser stimulation (HFS laser) of the visuo-auditory projection did not induce long-term potentiation. However, after pairing with sound stimulus, the visuo-auditory inputs were potentiated following either infusion of cholecystokinin (CCK) or HFS laser of the entorhino-auditory CCK-expressing projection. Combining retrograde tracing and RNAscope in situ hybridization, we show that Cck expression is higher in entorhinal cortex neurons projecting to the auditory cortex than in those originating from the visual cortex. In the presence of CCK, potentiation in the neocortex occurred when the presynaptic input arrived 200 ms before postsynaptic firing, even after just five trials of pairing. Behaviorally, inactivation of the CCK+ projection from the entorhinal cortex to the auditory cortex blocked the formation of visuo-auditory associative memory. Our results indicate that neocortical visuo-auditory association is formed through heterosynaptic plasticity, which depends on release of CCK in the neocortex mostly from entorhinal afferents.


Sujet(s)
Cholécystokinine , Cortex entorhinal , Souris , Animaux , Cortex entorhinal/physiologie , Cholécystokinine/métabolisme , Potentialisation à long terme/physiologie , Plasticité neuronale/physiologie , Neurones/métabolisme
6.
STAR Protoc ; 5(1): 102860, 2024 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-38306268

RÉSUMÉ

Cholecystokinin (CCK) is the most abundant neuropeptide that broadly regulates the physiological status of animals. Here, we present a two-color laser theta burst stimulation (L-TBS) protocol for simultaneous activation of Schaffer collateral and perforant pathway in the hippocampus of CCK Cre mice. We describe steps for heterosynaptic long-term potentiation induction by L-TBS. This technique allows for the examination of the neurotransmitter roles in synaptic modulation and facilitates the exploration of pathological mechanisms in genetic models of brain disorders in mice. For complete details on the use and execution of this protocol, please refer to Su et al.1.


Sujet(s)
Potentialisation à long terme , Opsines , Souris , Animaux , Potentialisation à long terme/physiologie , Opsines/métabolisme , Hippocampe/métabolisme
7.
CNS Neurosci Ther ; 30(3): e14422, 2024 03.
Article de Anglais | MEDLINE | ID: mdl-37715582

RÉSUMÉ

AIMS: Major depressive disorder is a severe psychiatric disorder that afflicts ~17% of the world population. Neuroimaging investigations of depressed patients have consistently reported the dysfunction of the basolateral amygdala in the pathophysiology of depression. However, how the BLA and related circuits are implicated in the pathogenesis of depression is poorly understood. METHODS: Here, we combined fiber photometry, immediate early gene expression (c-fos), optogenetics, chemogenetics, behavioral analysis, and viral tracing techniques to provide multiple lines of evidence of how the BLA neurons mediate depressive-like behavior. RESULTS: We demonstrated that the aversive stimuli elevated the neuronal activity of the excitatory BLA neurons (BLACAMKII neurons). Optogenetic activation of CAMKII neurons facilitates the induction of depressive-like behavior while inhibition of these neurons alleviates the depressive-like behavior. Next, we found that the chemogenetic inhibition of GABAergic neurons in the BLA (BLAGABA ) increased the firing frequency of CAMKII neurons and mediates the depressive-like phenotypes. Finally, through fiber photometry recording and chemogenetic manipulation, we proved that the activation of BLAGABA neurons inhibits BLACAMKII neuronal activity and alleviates depressive-like behavior in the mice. CONCLUSION: Thus, through evaluating BLAGABA and BLACAMKII neurons by distinct interaction, the BLA regulates depressive-like behavior.


Sujet(s)
Groupe nucléaire basolatéral , Trouble dépressif majeur , Humains , Souris , Animaux , Groupe nucléaire basolatéral/métabolisme , Calcium-Calmodulin-Dependent Protein Kinase Type 2/métabolisme , Trouble dépressif majeur/métabolisme , Neurones GABAergiques/métabolisme , Acide gamma-amino-butyrique/métabolisme
8.
Epilepsia ; 65(1): 218-237, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38032046

RÉSUMÉ

OBJECTIVE: Several studies have attributed epileptic activities in temporal lobe epilepsy (TLE) to the hippocampus; however, the participation of nonhippocampal neuronal networks in the development of TLE is often neglected. Here, we sought to understand how these nonhippocampal networks are involved in the pathology that is associated with TLE disease. METHODS: A kainic acid (KA) model of temporal lobe epilepsy was induced by injecting KA into dorsal hippocampus of C57BL/6J mice. Network activation after spontaneous seizure was assessed using c-Fos expression. Protocols to induce seizure using visual or auditory stimulation were developed, and seizure onset zone (SOZ) and frequency of epileptic spikes were evaluated using electrophysiology. The hippocampus was removed to assess seizure recurrence in the absence of hippocampus. RESULTS: Our results showed that cortical and hippocampal epileptic networks are activated during spontaneous seizures. Perturbation of these networks using visual or auditory stimulation readily precipitates seizures in TLE mice; the frequency of the light-induced or noise-induced seizures depends on the induction modality adopted during the induction period. Localization of SOZ revealed the existence of cortical and hippocampal SOZ in light-induced and noise-induced seizures, and the development of local and remote epileptic spikes in TLE occurs during the early stage of the disease. Importantly, we further discovered that removal of the hippocampi does not stop seizure activities in TLE mice, revealing that seizures in TLE mice can occur independent of the hippocampus. SIGNIFICANCE: This study has shown that the network pathology that evolves in TLE is not localized to the hippocampus; rather, remote brain areas are also recruited. The occurrence of light-induced or noise-induced seizures and epileptic discharges in epileptic mice is a consequence of the activation of nonhippocampal brain areas. This work therefore demonstrates the fundamental role of nonhippocampal epileptic networks in generating epileptic activities with or without the hippocampus in TLE disease.


Sujet(s)
Épilepsie temporale , Épilepsie , Souris , Animaux , Épilepsie temporale/anatomopathologie , Souris de lignée C57BL , Crises épileptiques/métabolisme , Hippocampe/anatomopathologie , Encéphale/anatomopathologie , Épilepsie/métabolisme , Modèles animaux de maladie humaine , Acide kaïnique/pharmacologie
9.
Cell Rep ; 42(12): 113467, 2023 12 26.
Article de Anglais | MEDLINE | ID: mdl-37979171

RÉSUMÉ

The hippocampus is broadly impacted by neuromodulations. However, how neuropeptides shape the function of the hippocampus and the related spatial learning and memory remains unclear. Here, we discover the crucial role of cholecystokinin (CCK) in heterosynaptic neuromodulation from the medial entorhinal cortex (MEC) to the hippocampus. Systematic knockout of the CCK gene impairs CA3-CA1 LTP and space-related performance. The MEC provides most of the CCK-positive neurons projecting to the hippocampal region, which potentiates CA3-CA1 long-term plasticity heterosynaptically in a frequency- and NMDA receptor (NMDAR)-dependent manner. Selective inhibition of MEC CCKergic neurons or downregulation of their CCK mRNA levels also impairs CA3-CA1 LTP formation and animals' performance in the water maze. This excitatory extrahippocampal projection releases CCK upon high-frequency excitation and is active during animal exploration. Our results reveal the critical role of entorhinal CCKergic projections in bridging intra- and extrahippocampal circuitry at electrophysiological and behavioral levels.


Sujet(s)
Région CA1 de l'hippocampe , Région CA2 de l'hippocampe , Région CA3 de l'hippocampe , Cholécystokinine , Cortex entorhinal , Plasticité neuronale , Apprentissage spatial , Cholécystokinine/génétique , Cholécystokinine/métabolisme , Cortex entorhinal/métabolisme , Région CA3 de l'hippocampe/physiologie , Région CA1 de l'hippocampe/physiologie , Région CA2 de l'hippocampe/physiologie , Synapses/physiologie , Apprentissage spatial/physiologie , Animaux , Souris , Souris knockout , Potentialisation à long terme
10.
Signal Transduct Target Ther ; 8(1): 374, 2023 09 25.
Article de Anglais | MEDLINE | ID: mdl-37743411

RÉSUMÉ

The crucial role of interferon (IFN) signaling is well known in the restriction or eradication of pathogen invasion. Viruses take a variety of ways to antagonize host defense through eliminating IFN-signaling intracellularly for decades. However, the way by viruses target IFN-signaling extracellularly has not been discovered. Infection by both coronavirus SARS-CoV-2 and enterovirus 71 (EV71 or EV-A71) can cause severe diseases such as neurological disorders and even death in children.1-3 Here, we show evidence that the protease of SARS-CoV-2 (3CLpro) and EV71 (2Apro) upregulates the expression and secretion of LDL-receptor-related protein-associated protein 1 (LRPAP1). As a ligand, the N-terminus of secreted LRPAP1 binds with the extracellular domain of IFNAR1 that triggers the receptor ubiquitination and degradation and promotes virus infection both in vitro, ex vivo in the mouse brain, and in vivo in newborn mice. A small peptide from the N-terminus of LRPAP1 effectively binds and causes IFNAR1 degradation that enhances both DNA and RNA viral infections, including herpesvirus HSV-1, hepatitis B virus (HBV), EV71, and beta-coronavirus HCoV-OC43; whereas α2M, a LRPAP1 inhibitor, arrests virus infections by stabilizing IFNAR1. Our study demonstrates a new mechanism used by viruses for evading host cell immunity, supporting a strategy for developing pan-antiviral drugs.


Sujet(s)
COVID-19 , Enfant , Humains , Animaux , Souris , SARS-CoV-2 , Transduction du signal , Antiviraux , Immunité innée/génétique , Récepteur à l'interféron alpha-bêta/génétique
11.
Mol Psychiatry ; 28(8): 3459-3474, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37365241

RÉSUMÉ

Depression is a common and severe mental disorder. Evidence suggested a substantial causal relationship between stressful life events and the onset of episodes of major depression. However, the stress-induced pathogenesis of depression and the related neural circuitry is poorly understood. Here, we investigated how cholecystokinin (CCK) and CCKBR in the basolateral amygdala (BLA) are implicated in stress-mediated depressive-like behavior. The BLA mediates emotional memories, and long-term potentiation (LTP) is widely considered a trace of memory. We identified that the cholecystokinin knockout (CCK-KO) mice impaired LTP in the BLA, while the application of CCK4 induced LTP after low-frequency stimulation (LFS). The entorhinal cortex (EC) CCK neurons project to the BLA and optogenetic activation of EC CCK afferents to BLA-promoted stress susceptibility through the release of CCK. We demonstrated that EC CCK neurons innervate CCKBR cells in the BLA and CCK-B receptor knockout (CCKBR-KO) mice impaired LTP in the BLA. Moreover, the CCKBR antagonists also blocked high-frequency stimulation (HFS) induced LTP formation in the BLA. Notably, CCKBR antagonists infusion into the BLA displayed an antidepressant-like effect in the chronic social defeat stress model. Together, these results indicate that CCKBR could be a potential target to treat depression.


Sujet(s)
Groupe nucléaire basolatéral , Humains , Souris , Animaux , Potentialisation à long terme/physiologie , Récepteur de la cholécystokinine de type B/physiologie , Dépression/traitement médicamenteux , Cholécystokinine/pharmacologie , Cholécystokinine/physiologie
12.
iScience ; 26(4): 106542, 2023 Apr 21.
Article de Anglais | MEDLINE | ID: mdl-37123227

RÉSUMÉ

Long-term potentiation (LTP), which underlies learning and memory, can be induced by high-frequency electrical stimulation (HFS or HFES) and is thought to occur at the synapses of efferent projection. Here, the contralateral connectivity in mice auditory cortex was investigated to reveal the fundamental corticocortical connection properties. After HFES, plasticity was not observed at the terminal synapses at the recording site. The optogenetic HFS at the recording site of the interhemispheric cortical projections could not induce LTP, but HFES at the recording site could induce the interhemispheric cortical LTP. Our subsequent results uncovered that it is the cholecystokinin (CCK) released from the entorhino-neocortical pathway induced by HEFS that modulates the neuroplasticity of the afferent projections, including interhemispheric auditory cortical afferents. Our study illustrates a heterosynaptic mechanism as the basis for cortical plasticity. This regulation might contribute new spots for the understanding and treatment of neurological disorders.

13.
ACS Nano ; 17(4): 3632-3644, 2023 02 28.
Article de Anglais | MEDLINE | ID: mdl-36744992

RÉSUMÉ

Super-resolution imaging provides a powerful approach to image dynamic biomolecule events at nanoscale resolution. An ingenious method involving tuning intramolecular spirocyclization in rhodamine offers an appealing strategy to design cell-permeable fluorogenic probes for super-resolution imaging. Nevertheless, precise control of rhodamine spirocyclization presents a significant challenge. Through detailed study of the structure-activity relationship, we identified that multiple key factors control rhodamime spirocyclization. The findings provide opportunities to create fluorogenic probes with tailored properties. On the basis of our findings, we constructed self-assembling rhodamine probes for no-wash live-cell confocal and super-resolution imaging. The designed self-assembling probe Rho-2CF3 specifically labeled its target proteins and displayed high ring-opening ability, fast labeling kinetics (<1 min), and large turn-on fold (>80 folds), which is very difficult to be realized by the existing methods. Using the probe, we achieved high-contrast super-resolution imaging of nuclei and mitochondria with a spatial resolution of up to 42 nm. The probe also showed excellent photostability and proved ideal for real-time and long-term tracking of mitochondrial fission and fusion events with high spatiotemporal resolution. Furthermore, Rho-2CF3 could resolve the ultrastructure of mitochondrial cristae and quantify their morphological changes under drug treatment at nanoscale. Our strategy thus demonstrates its usefulness in designing self-assembling probes for super-resolution imaging.


Sujet(s)
Colorants fluorescents , Mitochondries , Rhodamines/composition chimique , Colorants fluorescents/composition chimique , Microscopie de fluorescence/méthodes , Protéines
14.
J Neurosci ; 43(13): 2305-2325, 2023 03 29.
Article de Anglais | MEDLINE | ID: mdl-36813575

RÉSUMÉ

Cholecystokinin (CCK) enables excitatory circuit long-term potentiation (LTP). Here, we investigated its involvement in the enhancement of inhibitory synapses. Activation of GABA neurons suppressed neuronal responses in the neocortex to a forthcoming auditory stimulus in mice of both sexes. High-frequency laser stimulation (HFLS) of GABAergic neurons potentiated this suppression. HFLS of CCK interneurons could induce the LTP of their inhibition toward pyramidal neurons. This potentiation was abolished in CCK knock-out mice but intact in mice with both CCK1R and 2R knockout of both sexes. Next, we combined bioinformatics analysis, multiple unbiased cell-based assays, and histology examinations to identify a novel CCK receptor, GPR173. We propose GPR173 as CCK3R, which mediates the relationship between cortical CCK interneuron signaling and inhibitory LTP in the mice of either sex. Thus, GPR173 might represent a promising therapeutic target for brain disorders related to excitation and inhibition imbalance in the cortex.SIGNIFICANCE STATEMENT CCK, the most abundant and widely distributed neuropeptide in the CNS, colocalizes with many neurotransmitters and modulators. GABA is one of the important inhibitory neurotransmitters, and much evidence shows that CCK may be involved in modulating GABA signaling in many brain areas. However, the role of CCK-GABA neurons in the cortical microcircuits is still unclear. We identified a novel CCK receptor, GPR173, localized in the CCK-GABA synapses and mediated the enhancement of the GABA inhibition effect, which might represent a promising therapeutic target for brain disorders related to excitation and inhibition imbalance in the cortex.


Sujet(s)
Agents GABA , Récepteur cholécystokinine , Mâle , Femelle , Souris , Animaux , Agents GABA/pharmacologie , Cellules pyramidales/physiologie , Synapses/physiologie , Neurones GABAergiques/physiologie , Souris knockout , Interneurones , Cholécystokinine , Acide gamma-amino-butyrique/physiologie , Potentialisation à long terme/physiologie , Récepteurs couplés aux protéines G/génétique
15.
Cereb Cortex ; 33(10): 5863-5874, 2023 05 09.
Article de Anglais | MEDLINE | ID: mdl-36795038

RÉSUMÉ

The cortical distribution and functional role of cholecystokinin (CCK) are largely unknown. Here, a CCK receptor antagonist challenge paradigm was developed to assess functional connectivity and neuronal responses. Structural-functional magnetic resonance imaging and calcium imaging were undertaken in environmental enrichment (EE) and standard environment (SE) groups (naïve adult male mice, n = 59, C57BL/B6J, P = 60). Functional connectivity network-based statistics and pseudo-demarcation Voronoi tessellations to cluster calcium signals were used to derive region of interest metrics based on calcium transients, firing rate, and location. The CCK challenge elicited robust changes to structural-functional networks, decreased neuronal calcium transients, and max firing rate (5 s) of dorsal hippocampus in SE mice. However, the functional changes were not observed in EE mice, while the decreased neuronal calcium transients and max firing rate (5 s) were similar to SE mice. Decreased gray matter alterations were observed in multiple brain regions in the SE group due to CCK challenge, while no effect was observed in the EE group. The networks most affected by CCK challenge in SE included within isocortex, isocortex to olfactory, isocortex to striatum, olfactory to midbrain, and olfactory to thalamus. The EE group did not experience network changes in functional connectivity due to CCK challenge. Interestingly, calcium imaging revealed a significant decrease in transients and max firing rate (5 s) in the dorsal CA1 hippocampus subregion after CCK challenge in EE. Overall, CCK receptor antagonists affected brain-wide structural-functional connectivity within the isocortex, in addition to eliciting decreased neuronal calcium transients and max firing rate (5 s) in CA1 of the hippocampus. Future studies should investigate the CCK functional networks and how these processes affect isocortex modulation. Significance Statement  Cholecystokinin is a neuropeptide predominately found in the gastrointestinal system. Albeit abundantly expressed in neurons, the role and distribution of cholecystokinin are largely unknown. Here, we demonstrate cholecystokinin affects brain-wide structural-functional networks within the isocortex. In the hippocampus, the cholecystokinin receptor antagonist challenge decreases neuronal calcium transients and max firing rate (5 s) in CA1. We further demonstrate that mice in environmental enrichment do not experience functional network changes to the CCK receptor antagonist challenge. Environmental enrichment may afford protection to the alterations observed in control mice due to CCK. Our results suggest that cholecystokinin is distributed throughout the brain, interacts in the isocortex, and demonstrates an unexpected functional network stability for enriched mice.


Sujet(s)
Cholécystokinine , Connectome , Souris , Mâle , Animaux , Récepteur cholécystokinine , Calcium , Souris de lignée C57BL , Hippocampe
16.
Cereb Cortex ; 33(9): 5636-5645, 2023 04 25.
Article de Anglais | MEDLINE | ID: mdl-36396729

RÉSUMÉ

Neural dynamics are altered in the primary visual cortex (V1) during critical period monocular deprivation (MD). Synchronization of neural oscillations is pertinent to physiological functioning of the brain. Previous studies have reported chronic disruption of V1 functional properties such as ocular dominance, spatial acuity, and binocular matching after long-term monocular deprivation (LTMD). However, the possible neuromodulation and neural synchrony has been less explored. Here, we investigated the difference between juvenile and adult experience-dependent plasticity in mice from intracellular calcium signals with fluorescent indicators. We also studied alterations in local field potentials power bands and phase-amplitude coupling (PAC) of specific brain oscillations. Our results showed that LTMD in juveniles causes higher neuromodulatory changes as seen by high-intensity fluorescent signals from the non-deprived eye (NDE). Meanwhile, adult mice showed a greater response from the deprived eye (DE). LTMD in juvenile mice triggered alterations in the power of delta, theta, and gamma oscillations, followed by enhancement of delta-gamma PAC in the NDE. However, LTMD in adult mice caused alterations in the power of delta oscillations and enhancement of delta-gamma PAC in the DE. These markers are intrinsic to cortical neuronal processing during LTMD and apply to a wide range of nested oscillatory markers.


Sujet(s)
Vision monoculaire , Cortex visuel , Animaux , Souris , Vision monoculaire/physiologie , Privation sensorielle/physiologie , Cortex visuel/physiologie , Dominance oculaire , Neurones/physiologie , Plasticité neuronale/physiologie
17.
Adv Mater ; 35(6): e2208251, 2023 Feb.
Article de Anglais | MEDLINE | ID: mdl-36451587

RÉSUMÉ

Flexible microelectronics capable of straightforward implantation, remotely controlled navigation, and stable long-term recording hold great promise in diverse medical applications, particularly in deciphering complex functions of neural circuits in the brain. Existing flexible electronics, however, are often limited in bending and buckling during implantation, and unable to access a large brain region. Here, an injectable class of electronics with stable recording, omnidirectional steering, and precise navigating capabilities based on magnetic actuation is presented. After simple transcriptional injection, the rigid coatings are biodegraded quickly and the bundles of magnetic-nanoparticles-coated microelectrodes become separated, ultra-flexible, and magnetic actuated for further minimally invasive three-dimensional interpenetration in the brain. As proof of concept, this paradigm-shifting approach is demonstrated for selective and multiplexed neural activities recording across distant regions in the deep rodent brains. Coupling with optogenetic neural stimulation, the unique capabilities of this platform in electrophysiological readouts of projection dynamics in vivo are also demonstrated. The ability of these miniaturized, remotely controllable, and biocompatible ferromagnetic flexible electronics to afford minimally invasive manipulations in the soft tissues of the mammalian brain foreshadows applications in other organ systems, with great potential for broad utility in biomedical science and engineering.


Sujet(s)
Encéphale , Électronique , Animaux , Encéphale/physiologie , Microélectrodes , Injections , Mammifères
18.
NPJ Regen Med ; 7(1): 45, 2022 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-36064798

RÉSUMÉ

Peripheral nerve injury (PNI) often results in spontaneous motor recovery; however, how disrupted cerebellar circuitry affects PNI-associated motor recovery is unknown. Here, we demonstrated disrupted cerebellar circuitry and poor motor recovery in ataxia mice after PNI. This effect was mimicked by deep cerebellar nuclei (DCN) lesion, but not by damaging non-motor area hippocampus. By restoring cerebellar circuitry through DCN stimulation, and reversal of neurotransmitter imbalance using baclofen, ataxia mice achieve full motor recovery after PNI. Mechanistically, elevated glutamate-glutamine level was detected in DCN of ataxia mice by magnetic resonance spectroscopy. Transcriptomic study revealed that Gria1, an ionotropic glutamate receptor, was upregulated in DCN of control mice but failed to be upregulated in ataxia mice after sciatic nerve crush. AAV-mediated overexpression of Gria1 in DCN rescued motor deficits of ataxia mice after PNI. Finally, we found a correlative decrease in human GRIA1 mRNA expression in the cerebellum of patients with ataxia-telangiectasia and spinocerebellar ataxia type 6 patient iPSC-derived Purkinje cells, pointing to the clinical relevance of glutamatergic system. By conducting a large-scale analysis of 9,655,320 patients with ataxia, they failed to recover from carpal tunnel decompression surgery and tibial neuropathy, while aged-match non-ataxia patients fully recovered. Our results provide insight into cerebellar disorders and motor deficits after PNI.

19.
Cell Rep ; 38(10): 110506, 2022 03 08.
Article de Anglais | MEDLINE | ID: mdl-35263590

RÉSUMÉ

For survival, animals encode prominent events in complex environments, which modulates their defense behavior. Here, we design a paradigm that assesses how a mild aversive cue (i.e., mild air puff) interacts with sound-evoked flight behavior in mice. We find that air puffing facilitates sound-evoked flight behavior by enhancing the auditory responses of auditory cortical neurons. We then find that the anterior part of the anterior cingulate cortex (ACC) encodes the valence of air puffing and modulates the auditory cortex through anatomical examination, physiological recordings, and optogenetic/chemogenetic manipulations. Activating ACC projections to the auditory cortex simulates the facilitating effect of air puffing, whereas inhibiting the ACC or its projections to the auditory cortex neutralizes this facilitating effect. These findings show that the ACC regulates sound-evoked flight behavior by potentiating neuronal responses in the auditory cortex.


Sujet(s)
Cortex auditif , Gyrus du cingulum , Animaux , Cortex auditif/physiologie , Souris , Neurones/physiologie , Optogénétique
20.
MedComm (2020) ; 3(1): e112, 2022 Mar.
Article de Anglais | MEDLINE | ID: mdl-35281785

RÉSUMÉ

Specific roles of gut microbes in COVID-19 progression are critical. However, the circumstantial mechanism remains elusive. In this study, shotgun metagenomic or metatranscriptomic sequencing was performed on fecal samples collected from 13 COVID-19 patients and controls. We analyzed the structure of gut microbiota, identified the characteristic bacteria, and selected biomarkers. Further, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were employed to correlate the taxon alterations and corresponding functions. The gut microbiota of COVID-19 patients was characterized by the enrichment of opportunistic pathogens and depletion of commensals. The abundance of Bacteroides spp. displayed an inverse relationship with COVID-19 severity, whereas Actinomyces oris, Escherichia coli, and Streptococcus parasanguini were positively correlated with disease severity. The genes encoding oxidoreductase were significantly enriched in gut microbiome of COVID-19 group. KEGG annotation indicated that the expression of ABC transporter was upregulated, while the synthesis pathway of butyrate was aberrantly reduced. Furthermore, increased metabolism of lipopolysaccharide, polyketide sugar, sphingolipids, and neutral amino acids were found. These results suggested the gut microbiome of COVID-19 patients was in a state of oxidative stress. Healthy gut microbiota may enhance antiviral defenses via butyrate metabolism, whereas the accumulation of opportunistic and inflammatory bacteria may exacerbate COVID-19 progression.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...