Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Plant Mol Biol ; 98(4-5): 319-331, 2018 Nov.
Article de Anglais | MEDLINE | ID: mdl-30298427

RÉSUMÉ

The Lemnaceae, known as duckweed, the smallest flowering aquatic plant, shows promise as a plant bioreactor. For applying this potential plant bioreactor, establishing a stable and efficient genetic transformation system is necessary. The currently favored callus-based method for duckweed transformation is time consuming and genotype limited, as it requires callus culture and regeneration, which is inapplicable to many elite duckweed strains suitable for bioreactor exploitation. In this study, we attempted to establish a simple frond transformation system mediated by Agrobacterium tumefaciens for Lemna minor, one of the most widespread duckweed species in the world. To evaluate the feasibility of the new transformation system, the gene CYP710A11 was overexpressed to improve the yield of stigmasterol, which has multiple medicinal purposes. Three L. minor strains, ZH0055, D0158 and M0165, were transformed by both a conventional callus transformation system (CTS) and the simple frond transformation system (FTS). GUS staining, PCR, quantitative PCR and stigmasterol content detection showed that FTS can produce stable transgenic lines as well as CTS. Moreover, compared to CTS, FTS can avoid the genotype constraints of callus induction, thus saving at least half of the required processing time (CTS took 8-9 months while FTS took approximately 3 months in this study). Therefore, this transformation system is feasible in producing stable transgenic lines for a wide range of L. minor genotypes.


Sujet(s)
Agrobacterium tumefaciens/génétique , Alismatidae/génétique , Génie génétique/méthodes , Alismatidae/métabolisme , Bioréacteurs , Cytochrome P-450 enzyme system/génétique , Vecteurs génétiques/génétique , Protéines végétales/génétique , Végétaux génétiquement modifiés/génétique , Réaction de polymérisation en chaîne , Stigmastérol/métabolisme , Transformation génétique/génétique
2.
Biotechnol Biofuels ; 6(1): 72, 2013 May 08.
Article de Anglais | MEDLINE | ID: mdl-23651472

RÉSUMÉ

BACKGROUND: Duckweed can thrive on anthropogenic wastewater and produce tremendous biomass production. Due to its relatively high starch and low lignin percentage, duckweed is a good candidate for bioethanol fermentation. Previous studies have observed that water devoid of nutrients is good for starch accumulation, but its molecular mechanism remains unrevealed. RESULTS: This study globally analyzed the response to nutrient starvation in order to investigate the starch accumulation in duckweed (Landoltia punctata). L. punctata was transferred from nutrient-rich solution to distilled water and sampled at different time points. Physiological measurements demonstrated that the activity of ADP-glucose pyrophosphorylase, the key enzyme of starch synthesis, as well as the starch percentage in duckweed, increased continuously under nutrient starvation. Samples collected at 0 h, 2 h and 24 h time points respectively were used for comparative gene expression analysis using RNA-Seq. A comprehensive transcriptome, comprising of 74,797 contigs, was constructed by a de novo assembly of the RNA-Seq reads. Gene expression profiling results showed that the expression of some transcripts encoding key enzymes involved in starch biosynthesis was up-regulated, while the expression of transcripts encoding enzymes involved in starch consumption were down-regulated, the expression of some photosynthesis-related transcripts were down-regulated during the first 24 h, and the expression of some transporter transcripts were up-regulated within the first 2 h. Very interestingly, most transcripts encoding key enzymes involved in flavonoid biosynthesis were highly expressed regardless of starvation, while transcripts encoding laccase, the last rate-limiting enzyme of lignifications, exhibited very low expression abundance in all three samples. CONCLUSION: Our study provides a comprehensive expression profiling of L. punctata under nutrient starvation, which indicates that nutrient starvation down-regulated the global metabolic status, redirects metabolic flux of fixed CO2 into starch synthesis branch resulting in starch accumulation in L. punctata.

3.
Indian J Microbiol ; 52(4): 648-53, 2012 Dec.
Article de Anglais | MEDLINE | ID: mdl-24293725

RÉSUMÉ

The submerged cultivating conditions for triterpenoids production from Antrodia cinnamomea were optimized using uniform design method and the one-factor-at-a-time method was adopted to investigate the effect of plants oils and glucose supply on triterpenoids production and mycelia growth. Corn starch and culturing time were identified as more significant variables for triterpenoids production. The optimal conditions for triterpenoids production was 20.0 g/L corn starch, 20.0 g/L wheat bran, 1.85 g/L MgSO4, initial pH 3 and 16 days of cultivation. In addition, investigation of plant oils and glucose supply showed that 0.3 % (v/v) olive oil supply at the beginning of fermentation stimulated mycelia growth and significantly increased triterpenoids production; 0.2 % (w/v) glucose supplement at 10th day enhanced production of triterpenoids with slight effect on biomass, which is reported for the first time. The triterpenoids production experimentally obtained under the optimal conditions was 7.23 % (w/w). The uniform design method may be used to optimize many environmental and genetic factors such as temperature and agitation that can also affect the triterpenoids production from A. cinnamomea.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...