Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 3.896
Filtrer
1.
Regen Biomater ; 11: rbae044, 2024.
Article de Anglais | MEDLINE | ID: mdl-38962115

RÉSUMÉ

Polypropylene (PP) mesh is commonly used in abdominal wall repair due to its ability to reduce the risk of organ damage, infections and other complications. However, the PP mesh often leads to adhesion formation and does not promote functional tissue repair. In this study, we synthesized one kind of aldehyde Bletilla striata polysaccharide (BSPA) modified chitosan (CS) hydrogel based on Schiff base reaction. The hydrogel exhibited a porous network structure, a highly hydrophilic surface and good biocompatibility. We wrapped the PP mesh inside the hydrogel and evaluated the performance of the resulting composites in a bilateral 1 × 1.5 cm abdominal wall defect model in rats. The results of gross observation, histological staining and immunohistochemical staining demonstrated the positive impact of the CS hydrogel on anti-adhesion and wound healing effects. Notably, the addition of BSPA to the CS hydrogel further improved the performance of the composites in vivo, promoting wound healing by enhancing collagen deposition and capillary rearrangement. This study suggested that the BSPA-modified CS hydrogel significantly promoted the anti-adhesion, anti-inflammatory and pro-angiogenesis properties of PP meshes during the healing process. Overall, this work offers a novel approach to the design of abdominal wall repair patches.

2.
Front Neurol ; 15: 1418474, 2024.
Article de Anglais | MEDLINE | ID: mdl-38966086

RÉSUMÉ

Objectives: Wilson disease (WD) is a rare autosomal recessive disorder caused by a mutation in the ATP7B gene. Neurological symptoms are one of the most common symptoms of WD. This study aims to construct a model that can predict the occurrence of neurological symptoms by combining clinical multidimensional indicators with machine learning methods. Methods: The study population consisted of WD patients who received treatment at the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine from July 2021 to September 2023 and had a Leipzig score ≥ 4 points. Indicators such as general clinical information, imaging, blood and urine tests, and clinical scale measurements were collected from patients, and machine learning methods were employed to construct a prediction model for neurological symptoms. Additionally, the SHAP method was utilized to analyze clinical information to determine which indicators are associated with neurological symptoms. Results: In this study, 185 patients with WD (of whom 163 had neurological symptoms) were analyzed. It was found that using the eXtreme Gradient Boosting (XGB) to predict achieved good performance, with an MCC value of 0.556, ACC value of 0.929, AUROC value of 0.835, and AUPRC value of 0.975. Brainstem damage, blood creatinine (Cr), age, indirect bilirubin (IBIL), and ceruloplasmin (CP) were the top five important predictors. Meanwhile, the presence of brainstem damage and the higher the values of Cr, Age, and IBIL, the more likely neurological symptoms were to occur, while the lower the CP value, the more likely neurological symptoms were to occur. Conclusions: To sum up, the prediction model constructed using machine learning methods to predict WD cirrhosis has high accuracy. The most important indicators in the prediction model were brainstem damage, Cr, age, IBIL, and CP. It provides assistance for clinical decision-making.

3.
Article de Anglais | MEDLINE | ID: mdl-38953767

RÉSUMÉ

INTRODUCTION: Most therapeutics delivered using short-acting formulations need repeated administration, which can harm patient compliance and raise failure risks related to inconsistent treatment. Injectable long-acting formulations (ILAFs) are controlled/sustained-release formulations fabricated to deliver active pharmaceutical ingredients (APIs) and extend their half-life over days to months. Longer half-lives of ILAFs minimize the necessity for frequent doses, increase patient compliance, and reduce the risk of side effects from intravenous (IV) infusions. Using ILAF technologies, the immediate drug release can also be controlled, thereby minimizing potential adverse effects due to high initial drug blood concentrations. AREA COVERED: In this review, we have discussed various ILAFs, their physiochemical properties, fabrication technologies, advantages, and practical issues, as well as address some major challenges in their application. Especially, the approved ILAFs are highlighted. EXPERT OPINION: ILAFs are sustained-release formulations with extended activity, which can improve patient compliance. ILAFs are designed to deliver APIs like proteins and peptides and extend their half-life over days to months. The specific properties of each ILAF preparation, such as extended-release and improved drug targeting capabilities, make them an effective approach for precise and focused therapy. Furthermore, this is especially helpful for biopharmaceuticals with short biological half-lives and low stability since most environmental conditions can protect them from sustained-release delivery methods.

5.
Article de Anglais | MEDLINE | ID: mdl-38950182

RÉSUMÉ

OBJECTIVES: With increased lung transplantation in those aged 70 and older, limited literature addresses risk factors affecting their survival. Our study aims to identify independent factors impacting mid- and long-term mortality in this elderly population. METHODS: This study analyzed lung transplant patients over 70 from May 2005 to December 2022 using United Network for Organ Sharing data. The 3- or 5-year cohort excluded multi-organ, secondary transplantation and loss to follow-up. Univariable Cox analysis was conducted to assess recipient, donor and transplant factors. Factors with a significance level of P < 0.2 were subsequently included in a multivariable Cox model to identify correlations with 3- and 5-year mortality in patients aged over 70. RESULTS: Multivariable analysis has identified key factors affecting 3- and 5-year mortality in elderly lung transplant patients over 70. Common notable factors include recipient total bilirubin, intensive care unit status at the time of transplantation, donor diabetes, Cytomegalovirus (CMV) mismatch and single lung transplantation. Additionally, Hispanic/Latino patients and ischaemia time of the transplant significantly impact the 3-year mortality, while recipient age, diabetes, nitric oxide use before transplantation and creatinine were identified as unique independent risk factors affecting the 5-year morality. CONCLUSIONS: The study identified several independent risk factors that impact the mid- and long-term survival of lung transplantation for individuals over 70 years. These findings can contribute to the optimization of lung transplant treatment strategies and perioperative management in elderly patients, thereby enhancing the survival rate of this age group.

6.
Front Neurol ; 15: 1330975, 2024.
Article de Anglais | MEDLINE | ID: mdl-38978808

RÉSUMÉ

Introduction: Corpus callosum injury is a rare type of injury that occurs after a stroke and can cause lower limb dysfunction and a decrease in activities of daily living ability. Furthermore, there are no studies that focus on the progress in rehabilitation of the lower limb dysfunction caused by infarction in the corpus callosum and the effective treatment plans for this condition. We aimed to present a report of two patients with lower limb dysfunction caused by corpus callosum infarction after a stroke and a walking training method. Methods: We implemented a walking training method that prioritizes bilateral symmetry and increases lateral swaying before the patients established sitting/standing balance. The plan is a rapid and effective method for improving walking dysfunction caused by corpus callosum infarction. Case characteristics: Following sudden corpus callosum infarction, both patients experienced a significant reduction in lower limb motor function scores and exhibited evident gait disorders. Scale evaluations confirmed that walking training based on symmetrical and increased lateral sway for patients with lower limb motor dysfunction after corpus callosum infarction led to significant symptom improvement. Conclusion: We report two cases of sudden motor dysfunction in patients with corpus callosum infarction. Symmetrical and increased lateral sway-based walking training resulted in substantial symptom improvement, as confirmed by scale assessments.

7.
Front Mol Neurosci ; 17: 1345864, 2024.
Article de Anglais | MEDLINE | ID: mdl-38989156

RÉSUMÉ

Neuropathic pain is a type of chronic pain caused by an injury or somatosensory nervous system disease. Drugs and exercise could effectively relieve neuropathic pain, but no treatment can completely stop neuropathic pain. The integration of exercise into neuropathic pain management has attracted considerable interest in recent years, and treadmill training is the most used among exercise therapies. Neuropathic pain can be effectively treated if its mechanism is clarified. In recent years, the association between neuroinflammation and neuropathic pain has been explored. Neuroinflammation can trigger proinflammatory cytokines, activate microglia, inhibit descending pain modulatory systems, and promote the overexpression of brain-derived neurotrophic factor, which lead to the generation of neuropathic pain and hypersensitivity. Treadmill exercise can alleviate neuropathic pain mainly by regulating neuroinflammation, including inhibiting the activity of pro-inflammatory factors and over activation of microglia in the dorsal horn, regulating the expression of mu opioid receptor expression in the rostral ventromedial medulla and levels of γ-aminobutyric acid to activate the descending pain modulatory system and the overexpression of brain-derived neurotrophic factor. This article reviews and summarizes research on the effect of treadmill exercise on neuropathic pain and its role in the regulation of neuroinflammation to explore its benefits for neuropathic pain treatment.

8.
World J Clin Cases ; 12(18): 3629-3635, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38983401

RÉSUMÉ

BACKGROUND: The midpoint transverse process to pleura (MTP) block, a novel technique for thoracic paravertebral block (TPVB), was first employed in laparoscopic renal cyst decortication. CASE SUMMARY: Thoracic paravertebral nerve block is frequently employed for perioperative analgesia during laparoscopic cyst decortication. To address safety concerns associated with TPVBs, we administered MTP blocks in two patients prior to administering general anesthesia for laparoscopic cyst decortication. The MTP block was performed at the T9 level under ultrasound guidance, with 20 mL of 0.5% ropivacaine injected. Reduced sensation to cold and pinprick was observed from the T8 to T11 dermatome levels. Immediately postoperative Numeric Pain Rating Scale scores were 0/10 at rest and on movement, with none exceeding a mean 24 h numeric rating scale > 3. CONCLUSION: MTP block was effective technique for providing postoperative analgesia for patients undergoing laparoscopic renal cyst decortication.

9.
Cell Rep ; 43(7): 114459, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38985674

RÉSUMÉ

Glycine- and arginine-rich (GAR) motifs, commonly found in RNA-binding and -processing proteins, can be symmetrically (SDMA) or asymmetrically (ADMA) dimethylated at the arginine residue by protein arginine methyltransferases. Arginine-methylated protein motifs are usually read by Tudor domain-containing proteins. Here, using a GFP-Trap, we identify a non-Tudor domain protein, squamous cell carcinoma antigen recognized by T cells 3 (SART3), as a reader for SDMA-marked GAR motifs. Structural analysis and mutagenesis of SART3 show that aromatic residues lining a groove between two adjacent aromatic-rich half-a-tetratricopeptide (HAT) repeat domains are essential for SART3 to recognize and bind to SDMA-marked GAR motif peptides, as well as for the interaction between SART3 and the GAR-motif-containing proteins fibrillarin and coilin. Further, we show that the loss of this reader ability affects RNA splicing. Overall, our findings broaden the range of potential SDMA readers to include HAT domains.

10.
Mol Biotechnol ; 2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-38997500

RÉSUMÉ

The aim of this study was to investigate the impact of the antibiotic lidamycin (LDM) and the targeted therapy with the antibody Myosin heavy chain 9 (MYH9) on cancer cells, aiming to provide insights for cancer treatment. In this study, antibiotics and targeted antibodies were used in cancer cells, and then their effects on cell growth, proliferation, apoptosis regulation, and related proteins were measured, and comparative analysis was conducted on the effects of different drug concentrations on the growth of cancer cells. In H460, the apoptotic effect of 2 nM LDM on cells reached 70%. LDM had a downward trend on the levels of B-cell lymphoma-2 (Bcl-2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in cells. The inhibitory effects of LDM at different concentrations on human large cell lung cancer H460 transplanted tumor in nude mice reached 53.20% and 69.80%, and the inhibitory effects on the growth of lung adenocarcinoma transplanted tumor in nude mice reached 40.20% and 58.30%. The expression of MYH9 (myosin, heavy polypeptide 9, non-muscle) in human lung cancer tissues and adjacent tissues reached more than 80%. At the concentration of 300 µM, antibody MYH9 inhibited cell growth by 30%, and the migration rate was also reduced by 25%. The inhibitory effect of siRNA after knocking out the MYH9 gene on cancer cells reached 70%. Antibiotic LDM and targeted antibody MYH9 can inhibit the growth, proliferation, and migration of cancer cells, promote cancer cell apoptosis, and have certain clinical significance for the treatment of cancer patients.

11.
J Transl Med ; 22(1): 644, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38982507

RÉSUMÉ

BACKGROUND: Genetic disorders often manifest as abnormal fetal or childhood development. Copy number variations (CNVs) represent a significant genetic mechanism underlying such disorders. Despite their importance, the effectiveness of clinical exome sequencing (CES) in detecting CNVs, particularly small ones, remains incompletely understood. We aimed to evaluate the detection of both large and small CNVs using CES in a substantial clinical cohort, including parent-offspring trios and proband only analysis. METHODS: We conducted a retrospective analysis of CES data from 2428 families, collected from 2018 to 2021. Detected CNV were categorized as large or small, and various validation techniques including chromosome microarray (CMA), Multiplex ligation-dependent probe amplification assay (MLPA), and/or PCR-based methods, were employed for cross-validation. RESULTS: Our CNV discovery pipeline identified 171 CNV events in 154 cases, resulting in an overall detection rate of 6.3%. Validation was performed on 113 CNVs from 103 cases to assess CES reliability. The overall concordance rate between CES and other validation methods was 88.49% (100/113). Specifically, CES demonstrated complete consistency in detecting large CNV. However, for small CNVs, consistency rates were 81.08% (30/37) for deletions and 73.91% (17/23) for duplications. CONCLUSION: CES demonstrated high sensitivity and reliability in CNV detection. It emerges as an economical and dependable option for the clinical CNV detection in cases of developmental abnormalities, especially fetal structural abnormalities.


Sujet(s)
Variations de nombre de copies de segment d'ADN , , Maladies génétiques congénitales , Humains , Variations de nombre de copies de segment d'ADN/génétique , Maladies génétiques congénitales/diagnostic , Maladies génétiques congénitales/génétique , Reproductibilité des résultats , Femelle , Valeur prédictive des tests , Mâle , Études rétrospectives
12.
ACS Omega ; 9(25): 27222-27231, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38947809

RÉSUMÉ

Chromogenic smart windows are one of the key components in improving the building energy efficiency. By simulation of the three-dimensional network of polymer hydrogels, thermal-responsive phase change materials (TRPCMs) are manufactured for energy-saving windows. For simulated polymer hydrogels, tetradecanol (TD) and a color changing dye (CCD) are filled in situ in poly(n-butyl isobutyrate) (PBB) networks. TRPCMs convert solar energy into thermal energy through a dark blue CCD. The TD phase change material (PCM) absorbs heat energy to become a transparent liquid. Simultaneously, the CCD changes from blue to colorless and transparent at around 45 °C. As a result, as-prepared TRPCMs transform from an opaque state at room temperature to a high-transparency state after melting (74.5%). TRPCMs also show a good thermal storage capacity, with a phase transition enthalpy exceeding 161.9 J g-1. As-prepared smart materials can simultaneously achieve photothermal conversion, thermal energy diffusion, latent heat storage, and resistance to liquid leakage at the phase interface between opaque and transparent states, providing more options for the design of energy-saving buildings.

13.
Heliyon ; 10(12): e32850, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38975072

RÉSUMÉ

Simulated body fluid (SBF) is widely utilized in preclinical research for estimating the mineralization efficacy of biomaterials. Therefore, it is of great significance to construct an efficient and stable SBF mineralization system. The conventional SBF solutions cannot maintain a stable pH value and are prone to precipitate homogeneous calcium salts at the early stages of the biomimetic process because of the release of gaseous CO2. In this study, a simple but efficient five times SBF buffered by 5 % CO2 was developed and demonstrated to achieve excellent mineralized microstructure on a type of polymer-aligned nanofibrous scaffolds, which is strikingly similar to the natural human bone tissue. Scanning electron microscopy and energy-dispersive X-ray examinations indicated the growth of heterogeneous apatite with a high-calcium-to-phosphate ratio on the aligned nanofibers under 5 times SBF buffered by 5 % CO2. Moreover, X-ray diffraction spectroscopy and Fourier transform infrared analyses yielded peaks associated with carbonated hydroxyapatite with less prominent crystallization. In addition, the biomineralized aligned polycaprolactone nanofibers demonstrated excellent cell attachment, alignment, and proliferation characteristics in vitro. Overall, the results of this study showed that 5 × SBFs buffered by 5 % CO2 partial pressure are attractive alternatives for the efficient biomineralization of scaffolds in bone tissue engineering, and could be used as a model for the prediction of the bone-bonding bioactivity of biomaterials.

14.
Sci Rep ; 14(1): 15650, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38977905

RÉSUMÉ

To assess the agreement and repeatability of scotopic pupil size measurement using 2WIN-S (Adaptica, Padova, Italy) portable refractor in Chinese adults. This prospective non-randomized open-label controlled study assessed the scotopic pupil size of 100 right eyes using OPD-Scan III (Optical path difference) (Nidek Technologies, Gamagori, Japan) and 2WIN-S. OPD-Scan III and 2WIN-S measure pupil size using infrared light and detector, while 2WIN-S measures bilateral eyes simultaneously, OPD-Scan III measures unilateral eyes individually. Participants were first measured once using OPD-Scan III and two consecutive measurements were performed using 2WIN-S after 15 min of rest interval. The primary outcome was to evaluate the agreement between 2WIN-S and OPD-Scan III, and the secondary outcome was to evaluate the repeatability of 2WIN-S. Scotopic pupil size of 100 right eyes of 100 adults (28 male and 72 female) aged 18-53 years (mean 36 ± 12 years) was assessed using OPD-Scan III and 2WIN-S, respectively. The mean scotopic pupil size of OPD-Scan III and 2WIN-S was recorded to be 6.24 ± 0.88 mm and 6.27 ± 0.81 mm, respectively. For the mean scotopic pupil size of OPD-Scan III and 2WIN-S the difference was - 0.03 mm (95%CI - 0.10 to 0.04 mm), p = 0.445, the 95% limits of agreement (LOA) was - 0.71 to 0.66 mm. ICC between the two devices was 0.92 (95% CI 0.88-0.94) (ICC > 0.9 indicates excellent consistency). Coefficients of repeatability (CoR) of 2WIN-S was 0.37, which has a high repeatability. For the mean scotopic pupil size of 2WIN-S of the repeated measurements, the difference was -0.04 mm (95%CI - 0.08 to 0.01 mm), p = 0.019, the 95% limits of agreement (LOA) was - 0.41 to 0.32 mm, with a narrow LOA. However, the majority of the variations were less than ± 0.50 mm (98% of scotopic pupil size measurements were below this threshold), within the clinically acceptable range (± 0.50 mm). Our study showed excellent agreement between 2WIN-S and OPD-Scan III (ICC > 0.9) and a good repeatability of 2WIN-S (CoR = 0.37). This study suggests a novel technique for measuring pupillary responses in low light conditions, which can be considered an alternative to OPD-Scan III in clinical settings.


Sujet(s)
Pupille , Adolescent , Adulte , Femelle , Humains , Mâle , Adulte d'âge moyen , Jeune adulte , Chine , Peuples d'Asie de l'Est , Études prospectives , Pupille/physiologie , Reproductibilité des résultats
15.
Biochem Pharmacol ; 227: 116420, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38996934

RÉSUMÉ

Osteoarthritis (OA), characterized by chronic pain, significantly affects the quality of life of affected individuals. Key factors in OA pathogenesis include cartilage degradation and inflammation. Signal transducer and activator of transcription 3 (STAT3), a member of the STAT protein family, plays a pivotal role in mediating inflammation. STX-0119 has been verified as a small molecular compound that can specifically inhibit STAT3. However, the efficacy of STX-0119 in the treatment of OA remains to be evaluated. Therefore, the aim of this study was to explore the therapeutic effects and molecular mechanisms of STX-0119 in the treatment of OA. We found that the expression of phosphorylated STAT3 is upregulated in human OA cartilage as well as in the cartilage of a mouse model of OA. In vivo, joint injection of STX-0119 into OA mice alleviated cartilage degeneration without affecting the subchondral bone. Additionally, STX-0119 could inhibit the phosphorylation of STAT3 in the cartilage. In vitro, STX-0119 suppressed inflammatory responses in chondrocytes and promoted anabolic metabolism in an interleukin-1ß-induced chondrocyte inflammation model. Additionally, the results of transcriptome sequencing and lentiviral infection assays demonstrated that in chondrocytes, STX-0119 induces the upregulation of peroxisome proliferators-activated receptor gamma (PPARγ) expression by inhibiting STAT3 phosphorylation. Finally, in ex vivo cultures of human cartilage samples, STX-0119 was reaffirmed to inhibit cartilage degeneration via the STAT3/PPARγ signaling pathway. Together, our findings support the potential of STX-0119 for development as a therapeutic agent targeting STAT3 for the treatment of OA.

16.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-39000273

RÉSUMÉ

To address the increased energy demand, tumor cells undergo metabolic reprogramming, including oxidative phosphorylation (OXPHOS) and aerobic glycolysis. This study investigates the role of Kruppel-like factor 4 (KLF4), a transcription factor, as a tumor suppressor in hepatocellular carcinoma (HCC) by regulating ATP synthesis. Immunohistochemistry was performed to assess KLF4 expression in HCC tissues. Functional assays, such as CCK-8, EdU, and colony formation, as well as in vivo assays, including subcutaneous tumor formation and liver orthotopic xenograft mouse models, were conducted to determine the impact of KLF4 on HCC proliferation. Luciferase reporter assay and chromatin immunoprecipitation assay were utilized to evaluate the interaction between KLF4, miR-206, and RICTOR. The findings reveal low KLF4 expression in HCC, which is associated with poor prognosis. Both in vitro and in vivo functional assays demonstrate that KLF4 inhibits HCC cell proliferation. Mechanistically, it was demonstrated that KLF4 reduces ATP synthesis in HCC by suppressing the expression of RICTOR, a core component of mTORC2. This suppression promotes glutaminolysis to replenish the TCA cycle and increase ATP levels, facilitated by the promotion of miR-206 transcription. In conclusion, this study enhances the understanding of KLF4's role in HCC ATP synthesis and suggests that targeting the KLF4/miR-206/RICTOR axis could be a promising therapeutic approach for anti-HCC therapeutics.


Sujet(s)
Adénosine triphosphate , Carcinome hépatocellulaire , Prolifération cellulaire , Régulation de l'expression des gènes tumoraux , Facteur-4 de type Kruppel , Facteurs de transcription Krüppel-like , Tumeurs du foie , microARN , Carcinome hépatocellulaire/métabolisme , Carcinome hépatocellulaire/génétique , Carcinome hépatocellulaire/anatomopathologie , Humains , Tumeurs du foie/métabolisme , Tumeurs du foie/génétique , Tumeurs du foie/anatomopathologie , microARN/génétique , microARN/métabolisme , Facteur-4 de type Kruppel/métabolisme , Animaux , Souris , Adénosine triphosphate/métabolisme , Adénosine triphosphate/biosynthèse , Facteurs de transcription Krüppel-like/métabolisme , Facteurs de transcription Krüppel-like/génétique , Lignée cellulaire tumorale , Mâle , Évolution de la maladie , Souris nude , Femelle
17.
J Colloid Interface Sci ; 675: 1021-1031, 2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39003815

RÉSUMÉ

Development of non-noble metal-based electrocatalysts to enhance the performance of zinc-air batteries (ZABs) is of great significance, but it remains a formidable challenge due to their poor stability and activity. Herein, a bifunctional CuNi-TiOx/NCNFS electrocatalyst, featuring with electron-rich copper-nickel (CuNi) alloy nanoparticles anchored on titanium oxide/N-doped carbon nanofibers (TiOx/NCNFS), is constructed by a dual-substrate loading strategy. The introduction of TiOx has led to a significant increase in the stability of the dual-substrate. The strong electronic interaction between CuNi and TiOx strengthens the anchoring of active metal sites, thus accelerating the electron transfer. Theoretical calculations unclose that NCNFS can regulate the charge distribution of TiOx, inducing the charge transfer from NCNFS â†’ TiOx â†’ CuNi, thereby reducing the d-band center of Cu and Ni, which is beneficial to the desorption of intermediate oxide species of the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Therefore, CuNi-TiOx/NCNFS delivers a remarkable bifunctional performance with a low OER overpotential of 258 mV at 10 mA cm-2 and an ORR half-wave potential of 0.85  V. When assembled into ZABs, CuNi-TiOx/NCNFS shows a low potential gap of 0.64 V, a higher power density of 149.6 mW cm-2 at 330 mA cm-2, and an outstanding stability for 250 h at 5mA cm-2. This study provides a novel approach by constructing dual-substrate to tune the electronic structure of active metal sites for efficient rechargeable ZABs.

18.
Pest Manag Sci ; 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38984807

RÉSUMÉ

BACKGROUND: Calliptamus italicus L. is a major pest in Xinjiang grassland. The diapause overwintering strategy is one of the important reasons for the large population of this pest. This study investigated the function of the genes associated with the release of diapause (DIB, JHE and CAM) in Calliptamus italicus by RNA interference (RNAi) technology to aid in its biological control. RESULTS: The expression levels of DIB and its downstream-associated genes (EcR and FTZ-F1) in the eggs injected with dsDIB for 12 h decreased by 96.6%, 55.8% and 81.8%, respectively. Diapause began to terminate on day 3, and development was almost complete on day 6. However, the head was significantly smaller. The expression levels of JHE and its downstream-associated genes (JHEH and VgR) at 48 h after dsJHE treatment decreased by 76.5%, 85.6% and 85.9%, respectively. The termination of diapause occured on day 3 of incubation. The development was basically complete on day 6, but the yolk had been incompletely absorbed. The expression of CAM and its downstream-associated genes (CAMK4 and MYL) at 24 h after dsCAM treatment decreased by 42.4%, 95.3% and 82.7%, respectively. Diapause termination was completed on day 4 for incubation, and development was abnormal on day 6. The absorption of yolk was incomplete. CONCLUSION: DIB, JHE and CAM can delay the diapause termination of Calliptamus italicus eggs to different degrees and can be developed as potential target genes for its biological control. © 2024 Society of Chemical Industry.

19.
Am J Cancer Res ; 14(6): 2770-2789, 2024.
Article de Anglais | MEDLINE | ID: mdl-39005688

RÉSUMÉ

Chronic myeloid leukemia (CML) is a common hematopoietic malignancy in adults. Great progress has been made in CML therapy with imatinib. However, resistance to imatinib may occur during treatment. BCR::ABL1 dependent imatinib resistance has been well resolved with more potent tyrosine kinase inhibitors, but BCR::ABL1 independent resistance still remains to be resolved. This study is devoted to find novel targets for BCR::ABL1 independent imatinib-resistant patients. It is reported BCR::ABL1 independent resistance is mainly related to the activation of alternative survival pathway, and mTOR is an important regulator for cell growth especially in tumor cells. Hence, we explored the role of mTOR in BCR::ABL1 independent resistance, the possibility of mTOR to be a therapeutic target for imatinib resistant patients and the related mechanism. We found mTOR was upregulated in imatinib-resistant cells. mTOR inhibition by AZD2014 led to growth inhibition and synergized with imatinib in apoptosis induction in K562/G01. AZD2014 exerted its anti-leukemia effect through enhancing autophagy. mTOR signal pathway is poorly inhibited by imatinib and AZD2014 shows little effect on BCR::ABL1 signal pathway, which indicates that mTOR is involved in imatinib resistance via a BCR::ABL1 independent manner. Taken together, mTOR represents a potential target to overcome BCR::ABL1 independent imatinib resistance.

20.
Article de Anglais | MEDLINE | ID: mdl-39010835

RÉSUMÉ

Hypoxia is a critical factor contributing to a poor prognosis and challenging glioma therapy. Previous studies have indicated that hypoxia drives M2 polarization of macrophages and promotes cancer progression in various solid tumors. However, the more complex and diverse mechanisms underlying this process remain to be elucidated. Here, we aimed to examine the functions of hypoxia in gliomas and preliminarily investigate the underlying mechanisms of M2 macrophage polarization caused by hypoxia. We found that hypoxia significantly enhances the malignant phenotypes of U87 and U251 cells by regulating glycolysis. In addition, hypoxia-mediated accumulation of the glycolysis product (lactic acid, LA), which is subsequently absorbed by macrophages to induce its M2 polarization, and this process is reverted by both the glycolysis inhibitor and silenced monocarboxylate transporter (MCT-1) in macrophages, indicating that M2 macrophages polarization is associated with the promotion of glycolysis by hypoxia. Interestingly, we also found that hypoxia-mediated LA accumulation in glioma cells upon uptake by macrophages upregulates H3K18La expression and promotes tumor necrosis factor superfamily member 9 (TNFSF9) expression in a histone-lactylation-dependent manner based on the results of ChIP-seq enrichment analysis. Subsequent in vitro and in vivo experiments further indicated that TNFSF9 facilitated glioma progression. Mechanistically, hypoxia-mediated LA accumulation in glioma cells is taken up by macrophages and then induces its M2 macrophage polarization by regulating TNFSF9 expression via MCT-1/H3K18La signaling, thus facilitating the malignant progression of gliomas.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...