Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Physiol Behav ; 281: 114575, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38692384

RÉSUMÉ

Fibromyalgia (FM) is characterized by chronic widespread musculoskeletal pain accompanied by fatigue and muscle atrophy. Although its etiology is not known, studies have shown that FM patients exhibit altered function of the sympathetic nervous system (SNS), which regulates nociception and muscle plasticity. Nevertheless, the precise SNS-mediated mechanisms governing hyperalgesia and skeletal muscle atrophy in FM remain unclear. Thus, we employed two distinct FM-like pain models, involving intramuscular injections of acidic saline (pH 4.0) or carrageenan in prepubertal female rats, and evaluated the catecholamine content, adrenergic signaling and overall muscle proteolysis. Subsequently, we assessed the contribution of the SNS to the development of hyperalgesia and muscle atrophy in acidic saline-injected rats treated with clenbuterol (a selective ß2-adrenergic receptor agonist) and in animals maintained under baseline conditions and subjected to epinephrine depletion through adrenodemedullation (ADM). Seven days after inducing an FM-like model with acidic saline or carrageenan, we observed widespread mechanical hyperalgesia along with loss of strength and/or muscle mass. These changes were associated with reduced catecholamine content, suggesting a common underlying mechanism. Notably, treatment with a ß2-agonist alleviated hyperalgesia and prevented muscle atrophy in acidic saline-induced FM-like pain, while epinephrine depletion induced mechanical hyperalgesia and increased muscle proteolysis in animals under baseline conditions. Together, the results suggest that reduced sympathetic activity is involved in the development of pain and muscle atrophy in the murine model of FM analyzed.


Sujet(s)
Clenbutérol , Modèles animaux de maladie humaine , Fibromyalgie , Hyperalgésie , Amyotrophie , Système nerveux sympathique , Animaux , Femelle , Fibromyalgie/anatomopathologie , Fibromyalgie/physiopathologie , Amyotrophie/anatomopathologie , Amyotrophie/physiopathologie , Hyperalgésie/physiopathologie , Hyperalgésie/anatomopathologie , Système nerveux sympathique/physiopathologie , Système nerveux sympathique/effets des médicaments et des substances chimiques , Système nerveux sympathique/anatomopathologie , Clenbutérol/pharmacologie , Rats , Carragénane/toxicité , Rat Sprague-Dawley , Douleur/anatomopathologie , Douleur/physiopathologie , Épinéphrine , Muscles squelettiques/anatomopathologie , Muscles squelettiques/effets des médicaments et des substances chimiques , Muscles squelettiques/physiopathologie , Catécholamines/métabolisme , Agonistes bêta-adrénergiques/pharmacologie
2.
J Appl Physiol (1985) ; 128(4): 855-871, 2020 04 01.
Article de Anglais | MEDLINE | ID: mdl-32027543

RÉSUMÉ

The sympathetic nervous system (SNS) activates cAMP signaling and promotes trophic effects on brown adipose tissue (BAT) through poorly understood mechanisms. Because norepinephrine has been found to induce antiproteolytic effects on muscle and heart, we hypothesized that the SNS could inhibit autophagy in interscapular BAT (IBAT). Here, we describe that selective sympathetic denervation of rat IBAT kept at 25°C induced atrophy, and in parallel dephosphorylated forkhead box class O (FoxO), and increased cathepsin activity, autophagic flux, autophagosome formation, and expression of autophagy-related genes. Conversely, cold stimulus (4°C) for up to 72 h induced thermogenesis and IBAT hypertrophy, an anabolic effect that was associated with inhibition of cathepsin activity, autophagic flux, and autophagosome formation. These effects were abrogated by sympathetic denervation, which also upregulated Gabarapl1 mRNA. In addition, the cold-driven sympathetic activation stimulated the mechanistic target of rapamycin (mTOR) pathway, leading to the enhancement of protein synthesis, evaluated in vivo by puromycin incorporation, and to the inhibitory phosphorylation of Unc51-like kinase-1, a key protein in the initiation of autophagy. This coincided with a higher content of exchange protein-1 directly activated by cAMP (Epac1), a cAMP effector, and phosphorylation of Akt at Thr308, all these effects being abolished by denervation. Systemic treatment with norepinephrine for 72 h mimicked most of the cold effects on IBAT. These data suggest that the noradrenergic sympathetic inputs to IBAT restrain basal autophagy via suppression of FoxO and, in the setting of cold, stimulate protein synthesis via the Epac/Akt/mTOR-dependent pathway and suppress the autophagosome formation, probably through posttranscriptional mechanisms.NEW & NOTEWORTHY The underlying mechanisms related to the anabolic role of sympathetic innervation on brown adipose tissue (BAT) are unclear. We show that sympathetic denervation activates autophagic-lysosomal degradation, leading to a loss of mitochondrial proteins and BAT atrophy. Conversely, cold-driven sympathetic activation suppresses autophagy and stimulates protein synthesis, leading to BAT hypertrophy. Given its high-potential capacity for heat production, understanding the mechanisms that contribute to BAT mass is important to optimize chances of survival for endotherms in cold ambients.


Sujet(s)
Tissu adipeux brun , Thermogenèse , Animaux , Autophagie , Basse température , Lysosomes , Rats , Système nerveux sympathique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE