Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Chem Inf Model ; 64(15): 5796-5805, 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-38995078

RÉSUMÉ

Machine learning-driven computer-aided synthesis planning (CASP) tools have become important tools for idea generation in the design of complex molecule synthesis but do not adequately address the stereochemical features of the target compounds. A novel approach to automated extraction of templates used in CASP that includes stereochemical information included in the US Patent and Trademark Office (USPTO) and an internal AstraZeneca database containing reactions from Reaxys, Pistachio, and AstraZeneca electronic lab notebooks is implemented in the freely available AiZynthFinder software. Three hundred sixty-seven templates covering reagent- and substrate-controlled as well as stereospecific reactions were extracted from the USPTO, while 20,724 templates were from the AstraZeneca database. The performance of these templates in multistep CASP is evaluated for 936 targets from the ChEMBL database and an in-house selection of 791 AZ designs. The potential and limitations are discussed for four case studies from ChEMBL and examples of FDA-approved drugs.


Sujet(s)
Apprentissage machine , Stéréoisomérie , Conception assistée par ordinateur , Logiciel , Conception de médicament
2.
Biophys J ; 123(5): 622-637, 2024 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-38327055

RÉSUMÉ

Serial crystallography and time-resolved data collection can readily be employed to investigate the catalytic mechanism of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl (HMG)-coenzyme-A (CoA) reductase (PmHMGR) by changing the environmental conditions in the crystal and so manipulating the reaction rate. This enzyme uses a complex mechanism to convert mevalonate to HMG-CoA using the co-substrate CoA and cofactor NAD+. The multi-step reaction mechanism involves an exchange of bound NAD+ and large conformational changes by a 50-residue subdomain. The enzymatic reaction can be run in both forward and reverse directions in solution and is catalytically active in the crystal for multiple reaction steps. Initially, the enzyme was found to be inactive in the crystal starting with bound mevalonate, CoA, and NAD+. To observe the reaction from this direction, we examined the effects of crystallization buffer constituents and pH on enzyme turnover, discovering a strong inhibition in the crystallization buffer and a controllable increase in enzyme turnover as a function of pH. The inhibition is dependent on ionic concentration of the crystallization precipitant ammonium sulfate but independent of its ionic composition. Crystallographic studies show that the observed inhibition only affects the oxidation of mevalonate but not the subsequent reactions of the intermediate mevaldehyde. Calculations of the pKa values for the enzyme active site residues suggest that the effect of pH on turnover is due to the changing protonation state of His381. We have now exploited the changes in ionic inhibition in combination with the pH-dependent increase in turnover as a novel approach for triggering the PmHMGR reaction in crystals and capturing information about its intermediate states along the reaction pathway.


Sujet(s)
Hydroxymethylglutaryl-CoA reductases , NAD , Hydroxymethylglutaryl-CoA reductases/composition chimique , Hydroxymethylglutaryl-CoA reductases/métabolisme , NAD/métabolisme , Cristallographie , Acide mévalonique/métabolisme , Concentration en ions d'hydrogène , Cinétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE