Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
1.
J Bacteriol ; 206(2): e0035523, 2024 02 22.
Article de Anglais | MEDLINE | ID: mdl-38197669

RÉSUMÉ

In Escherichia coli, one of the best understood microorganisms, much can still be learned about the basic interactions between transcription factors and promoters. When a cAMP-deficient cya mutant is supplied with maltose as the main carbon source, mutations develop upstream from the two genes malT and sdaC. Here, we explore the regulation of the two promoters, using fluorescence-based genetic reporters in combination with both spontaneously evolved and systematically engineered cis-acting mutations. We show that in the cya mutant, regulation of malT and sdaC evolves toward cAMP-independence and increased expression in the stationary phase. Furthermore, we show that the location of the cAMP receptor protein (Crp) binding site upstream of malT is important for alternative sigma factor usage. This provides new insights into the architecture of bacterial promoters and the global interplay between Crp and sigma factors in different growth phases.IMPORTANCEThis work provides new general insights into (1) the architecture of bacterial promoters, (2) the importance of the location of Class I Crp-dependent promoters, and (3) the global interplay between Crp and sigma factors in different growth phases.


Sujet(s)
Protéines Escherichia coli , Escherichia coli , Protéines bactériennes/métabolisme , Protéine réceptrice de l'AMP cyclique/génétique , Protéine réceptrice de l'AMP cyclique/métabolisme , Escherichia coli/génétique , Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Protéines Escherichia coli/métabolisme , Régulation de l'expression des gènes bactériens , Mutation , Facteur sigma/génétique , Facteur sigma/métabolisme , Transcription génétique
2.
mBio ; 12(5): e0202821, 2021 10 26.
Article de Anglais | MEDLINE | ID: mdl-34700380

RÉSUMÉ

How do hierarchical gene regulation networks evolve in bacteria? Nucleoid-associated proteins (NAPs) influence the overall structure of bacterial genomes, sigma factors and global transcription factors (TFs) control thousands of genes, and many operons are regulated by highly specific TFs that in turn are controlled allosterically by cellular metabolites. These regulatory hierarchies have been shaped by millions of years of evolution to optimize fitness in response to changing environmental conditions, but it is unclear how NAPs and TFs relate and have evolved together. Cyclic AMP (cAMP) receptor protein (Crp) is the paradigmatic global TF in Escherichia coli, and here we report that mutations in the topA gene compensate for loss of cAMP, showing that the interplay between Crp and the supercoiling status of promoters is key to global stress response. Furthermore, we observed an effect of apoCrp on gene expression in the absence of its effector cAMP. This provides support for the proposed NAP-like role for Crp, suggesting that it represents an intermediate point in the evolution of a ligand-controlled TF from a NAP. IMPORTANCE Here we report that mutations in the topA gene compensate for loss of cAMP, showing that the interplay between Crp and the supercoiling status of promoters is key to global stress response. Furthermore, we observed an effect of apoCrp on gene expression in the absence of its effector cAMP. This provides support for the proposed NAP-like role for Crp, suggesting that it represents an intermediate point in the evolution of a ligand-controlled TF from a NAP.


Sujet(s)
Protéine réceptrice de l'AMP cyclique/métabolisme , Protéines Escherichia coli/métabolisme , Escherichia coli/métabolisme , Régulation de l'expression des gènes bactériens , AMP cyclique/métabolisme , Protéine réceptrice de l'AMP cyclique/génétique , ADN topoisomérases de type I/génétique , ADN topoisomérases de type I/métabolisme , Escherichia coli/enzymologie , Escherichia coli/génétique , Protéines Escherichia coli/génétique , Réseaux de régulation génique
3.
Nat Commun ; 12(1): 5880, 2021 10 07.
Article de Anglais | MEDLINE | ID: mdl-34620864

RÉSUMÉ

The evolution of microorganisms often involves changes of unclear relevance, such as transient phenotypes and sequential development of multiple adaptive mutations in hotspot genes. Previously, we showed that ageing colonies of an E. coli mutant unable to produce cAMP when grown on maltose, accumulated mutations in the crp gene (encoding a global transcription factor) and in genes involved in pyrimidine metabolism such as cmk; combined mutations in both crp and cmk enabled fermentation of maltose (which usually requires cAMP-mediated Crp activation for catabolic pathway expression). Here, we study the sequential generation of hotspot mutations in those genes, and uncover a regulatory role of pyrimidine nucleosides in carbon catabolism. Cytidine binds to the cytidine regulator CytR, modifies the expression of sigma factor 32 (RpoH), and thereby impacts global gene expression. In addition, cytidine binds and activates a Crp mutant directly, thus modulating catabolic pathway expression, and could be the catabolite modulating factor whose existence was suggested by Jacques Monod and colleagues in 1976. Therefore, transcription factor Crp appears to work in concert with CytR and RpoH, serving a dual role in sensing both carbon availability and metabolic flux towards DNA and RNA. Our findings show how certain alterations in metabolite concentrations (associated with colony ageing and/or due to mutations in metabolic or regulatory genes) can drive the evolution in non-growing cells.


Sujet(s)
Protéine réceptrice de l'AMP cyclique/génétique , Protéine réceptrice de l'AMP cyclique/métabolisme , Protéines Escherichia coli/génétique , Protéines Escherichia coli/métabolisme , Escherichia coli/génétique , Escherichia coli/métabolisme , Évolution moléculaire , Pyrimidines/métabolisme , ADN bactérien , Escherichia coli/croissance et développement , Régulation de l'expression des gènes bactériens , Gènes bactériens , Protéines du choc thermique , Voies et réseaux métaboliques/génétique , Mutation , Phénotype , Protéines de répression/métabolisme , Facteur sigma , Facteurs de transcription/métabolisme
4.
Commun Biol ; 4(1): 963, 2021 08 12.
Article de Anglais | MEDLINE | ID: mdl-34385596

RÉSUMÉ

Gene expression toxicity is an important biological phenomenon and a major bottleneck in biotechnology. Escherichia coli BL21(DE3) is the most popular choice for recombinant protein production, and various derivatives have been evolved or engineered to facilitate improved yield and tolerance to toxic genes. However, previous efforts to evolve BL21, such as the Walker strains C41 and C43, resulted only in decreased expression strength of the T7 system. This reveals little about the mechanisms at play and constitutes only marginal progress towards a generally higher producing cell factory. Here, we restrict the solution space for BL21(DE3) to evolve tolerance and isolate a mutant strain Evo21(DE3) with a truncation in the essential RNase E. This suggests that RNA stability plays a central role in gene expression toxicity. The evolved rne truncation is similar to a mutation previously engineered into the commercially available BL21Star(DE3), which challenges the existing assumption that this strain is unsuitable for expressing toxic proteins. We isolated another dominant mutation in a presumed substrate binding site of RNase E that improves protein production further when provided as an auxiliary plasmid. This makes it easy to improve other BL21 variants and points to RNases as prime targets for cell factory optimisation.


Sujet(s)
Escherichia coli/composition chimique , Expression des gènes , Stabilité de l'ARN , ARN bactérien/composition chimique , Mutation
5.
Microb Cell Fact ; 20(1): 93, 2021 May 01.
Article de Anglais | MEDLINE | ID: mdl-33933097

RÉSUMÉ

Poly(ethylene terephthalate) (PET) is the world's most abundant polyester plastic, and its ongoing accumulation in nature is causing a global environmental problem. Currently, the main recycling processes utilize thermomechanical or chemical means, resulting in the deterioration of the mechanical properties of PET. Consequently, polluting de novo synthesis remains preferred, creating the need for more efficient and bio-sustainable ways to hydrolyze the polymer. Recently, a PETase enzyme from the bacterium Ideonella sakaiensis was shown to facilitate PET biodegradation, albeit at slow rate. Engineering of more efficient PETases is required for industrial relevance, but progress is currently hampered by the dependency on intracellular expression in Escherichia coli. To create a more efficient screening platform in E. coli, we explore different surface display anchors for fast and easy assaying of PETase activity. We show that PETases can be functionally displayed on the bacterial cell surface, enabling screening of enzyme activity on PET microparticles - both while anchored to the cell and following solubilization of the enzymes.


Sujet(s)
Dépollution biologique de l'environnement , Escherichia coli/génétique , Escherichia coli/métabolisme , Hydrolases/génétique , Hydrolases/métabolisme , Téréphtalate polyéthylène/métabolisme , Hydrolyse , Propriétés de surface
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE