Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cell Death Differ ; 24(2): 288-299, 2017 02.
Article de Anglais | MEDLINE | ID: mdl-27911443

RÉSUMÉ

We observed that the transient induction of mtDNA double strand breaks (DSBs) in cultured cells led to activation of cell cycle arrest proteins (p21/p53 pathway) and decreased cell growth, mediated through reactive oxygen species (ROS). To investigate this process in vivo we developed a mouse model where we could transiently induce mtDNA DSBs ubiquitously. This transient mtDNA damage in mice caused an accelerated aging phenotype, preferentially affecting proliferating tissues. One of the earliest phenotypes was accelerated thymus shrinkage by apoptosis and differentiation into adipose tissue, mimicking age-related thymic involution. This phenotype was accompanied by increased ROS and activation of cell cycle arrest proteins. Treatment with antioxidants improved the phenotype but the knocking out of p21 or p53 did not. Our results demonstrate that transient mtDNA DSBs can accelerate aging of certain tissues by increasing ROS. Surprisingly, this mtDNA DSB-associated senescence phenotype does not require p21/p53, even if this pathway is activated in the process.


Sujet(s)
Inhibiteur p21 de kinase cycline-dépendante/métabolisme , ADN mitochondrial/métabolisme , Protéine p53 suppresseur de tumeur/métabolisme , Acétylcystéine/pharmacologie , Vieillissement , Animaux , Apoptose , Points de contrôle du cycle cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , Inhibiteur p21 de kinase cycline-dépendante/génétique , Cassures double-brin de l'ADN/effets des médicaments et des substances chimiques , Type II site-specific deoxyribonuclease/génétique , Type II site-specific deoxyribonuclease/métabolisme , Femelle , Mâle , Souris , Souris de lignée C57BL , Souris knockout , Souris transgéniques , Mifépristone/toxicité , Phénotype , Espèces réactives de l'oxygène/métabolisme , Thymocytes/cytologie , Thymocytes/effets des médicaments et des substances chimiques , Thymocytes/métabolisme , Protéine p53 suppresseur de tumeur/génétique
2.
Hum Mol Genet ; 22(19): 3976-86, 2013 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-23760083

RÉSUMÉ

With age, muscle mass and integrity are progressively lost leaving the elderly frail, weak and unable to independently care for themselves. Defined as sarcopenia, this age-related muscle atrophy appears to be multifactorial but its definite cause is still unknown. Mitochondrial dysfunction has been implicated in this process. Using a novel transgenic mouse model of mitochondrial DNA (mtDNA) double-strand breaks (DSBs) that presents a premature aging-like phenotype, we studied the role of mtDNA damage in muscle wasting. We caused DSBs in mtDNA of adult mice using a ubiquitously expressed mitochondrial-targeted endonuclease, mito-PstI. We found that a short, transient systemic mtDNA damage led to muscle wasting and a decline in locomotor activity later in life. We found a significant decline in muscle satellite cells, which decreases the muscle's capacity to regenerate and repair during aging. This phenotype was associated with impairment in acetylcholinesterase (AChE) activity and assembly at the neuromuscular junction (NMJ), also associated with muscle aging. Our data suggests that systemic mitochondrial dysfunction plays important roles in age-related muscle wasting by preferentially affecting the myosatellite cell pool.


Sujet(s)
Altération de l'ADN , ADN mitochondrial/génétique , ADN mitochondrial/métabolisme , Mitochondries du muscle/physiologie , Muscles squelettiques/métabolisme , Sarcopénie/génétique , Cellules satellites du muscle squelettique/physiologie , Acetylcholinesterase/métabolisme , Animaux , Cassures double-brin de l'ADN , Type II site-specific deoxyribonuclease/métabolisme , Femelle , Mâle , Souris , Souris transgéniques , Mitochondries du muscle/génétique , Mitochondries du muscle/anatomopathologie , Chaperons moléculaires/métabolisme , Activité motrice , Jonction neuromusculaire/enzymologie , Stress oxydatif , Sarcopénie/physiopathologie
3.
Mitochondrion ; 13(5): 417-26, 2013 09.
Article de Anglais | MEDLINE | ID: mdl-23261681

RÉSUMÉ

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This retraction was suggested by the University of Cologne Investigation committee and seconded by the authors who the journal was able to contact (Wenz, T., Dillon, L., Diaz, F., Hida, A., and Moraes, C.T.). Following an investigation of the last author, Dr. Tina Wenz, by the University of Cologne, Germany, the university determined that data presented in this article have been inappropriately manipulated https://www.portal.uni-koeln.de/9015.html?&tx_news_pi1%5Bnews%5D=4335&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D=detail&cHash=1deb8399d7f796d65ca9f6ae4764a1ce. Specifically, western blot images in Figure 5F (tubulin in cortex), 2F (COXI in hippocampus) and 3B (Sod2 in hippocampus) were re-used from an earlier article published elsewhere [Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging" Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, and Moraes CT. Proc Natl Acad Sci U S A. 2009;106:20405-10, doi: 10.1073/pnas.0911570106] representing different experimental findings. Therefore, whether or not the main conclusions are still valid, the authors request retraction of this publication because the scientific integrity of the study was compromised. The authors sincerely apologize to the scientific community.


Sujet(s)
Bézafibrate/administration et posologie , Hypolipémiants/administration et posologie , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/physiologie , Encéphalomyopathies mitochondriales/anatomopathologie , Encéphalomyopathies mitochondriales/physiopathologie , Neuroprotecteurs/administration et posologie , Adénosine triphosphate/métabolisme , Alkyl et aryl transferases/déficit , Animaux , Astrocytes/physiologie , Prolifération cellulaire , Modèles animaux de maladie humaine , Protéines membranaires/déficit , Souris , Protéines mitochondriales/métabolisme , Résultat thérapeutique
4.
PLoS One ; 7(9): e44335, 2012.
Article de Anglais | MEDLINE | ID: mdl-22962610

RÉSUMÉ

Pharmacological agents, such as bezafibrate, that activate peroxisome proliferator-activated receptors (PPARs) and PPAR γ coactivator-1α (PGC-1α) pathways have been shown to improve mitochondrial function and energy metabolism. The mitochondrial DNA (mtDNA) mutator mouse is a mouse model of aging that harbors a proofreading-deficient mtDNA polymerase γ. These mice develop many features of premature aging including hair loss, anemia, osteoporosis, sarcopenia and decreased lifespan. They also have increased mtDNA mutations and marked mitochondrial dysfunction. We found that mutator mice treated with bezafibrate for 8-months had delayed hair loss and improved skin and spleen aging-like phenotypes. Although we observed an increase in markers of fatty acid oxidation in these tissues, we did not detect a generalized increase in mitochondrial markers. On the other hand, there were no improvements in muscle function or lifespan of the mutator mouse, which we attributed to the rodent-specific hepatomegaly associated with fibrate treatment. These results showed that despite its secondary effects in rodent's liver, bezafibrate was able to improve some of the aging phenotypes in the mutator mouse. Because the associated hepatomegaly is not observed in primates, long-term bezafibrate treatment in humans could have beneficial effects on tissues undergoing chronic bioenergetic-related degeneration.


Sujet(s)
Vieillissement précoce/traitement médicamenteux , Bézafibrate/administration et posologie , ADN mitochondrial/génétique , Hypolipémiants/administration et posologie , Récepteur PPAR gamma/agonistes , Peau/effets des médicaments et des substances chimiques , Rate/effets des médicaments et des substances chimiques , Vieillissement précoce/métabolisme , Vieillissement précoce/anatomopathologie , Animaux , Bézafibrate/effets indésirables , Métabolisme énergétique/effets des médicaments et des substances chimiques , Acides gras/métabolisme , Hépatomégalie/induit chimiquement , Hépatomégalie/métabolisme , Hépatomégalie/anatomopathologie , Humains , Hypolipémiants/effets indésirables , Mâle , Souris , Souris transgéniques , Mitochondries/génétique , Mitochondries/métabolisme , Mutation , Oxydoréduction , Récepteur PPAR gamma/génétique , Récepteur PPAR gamma/métabolisme , Phénotype , Peau/métabolisme , Peau/anatomopathologie , Spécificité d'espèce , Rate/métabolisme , Rate/anatomopathologie
5.
Hum Mol Genet ; 21(10): 2288-97, 2012 May 15.
Article de Anglais | MEDLINE | ID: mdl-22357654

RÉSUMÉ

Aging is an intricate process that increases susceptibility to sarcopenia and cardiovascular diseases. The accumulation of mitochondrial DNA (mtDNA) mutations is believed to contribute to mitochondrial dysfunction, potentially shortening lifespan. The mtDNA mutator mouse, a mouse model with a proofreading-deficient mtDNA polymerase γ, was shown to develop a premature aging phenotype, including sarcopenia, cardiomyopathy and decreased lifespan. This phenotype was associated with an accumulation of mtDNA mutations and mitochondrial dysfunction. We found that increased expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a crucial regulator of mitochondrial biogenesis and function, in the muscle of mutator mice increased mitochondrial biogenesis and function and also improved the skeletal muscle and heart phenotypes of the mice. Deep sequencing analysis of their mtDNA showed that the increased mitochondrial biogenesis did not reduce the accumulation of mtDNA mutations but rather caused a small increase. These results indicate that increased muscle PGC-1α expression is able to improve some premature aging phenotypes in the mutator mice without reverting the accumulation of mtDNA mutations.


Sujet(s)
Vieillissement/métabolisme , ADN mitochondrial/métabolisme , Mitochondries/métabolisme , Mutation , Phénotype , Animaux , Souris , Souris transgéniques , Muscles squelettiques/métabolisme , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes , Transactivateurs/génétique , Transactivateurs/métabolisme , Facteurs de transcription
6.
J Neurosci ; 31(48): 17649-58, 2011 Nov 30.
Article de Anglais | MEDLINE | ID: mdl-22131425

RÉSUMÉ

Parkinson's disease (PD) is one of the most common progressive neurodegenerative disorders, characterized by resting tremor, rigidity, bradykinesia, and postural instability. These symptoms are associated with massive loss of tyrosine hydroxylase-positive neurons in the substantia nigra (SN) causing an estimated 70-80% depletion of dopamine (DA) in the striatum, where their projections are located. Although the etiology of PD is unknown, mitochondrial dysfunctions have been associated with the disease pathophysiology. We used a mouse model expressing a mitochondria-targeted restriction enzyme, PstI or mito-PstI, to damage mitochondrial DNA (mtDNA) in dopaminergic neurons. The expression of mito-PstI induces double-strand breaks in the mtDNA, leading to an oxidative phosphorylation deficiency, mostly due to mtDNA depletion. Taking advantage of a dopamine transporter (DAT) promoter-driven tetracycline transactivator protein (tTA), we expressed mito-PstI exclusively in dopaminergic neurons, creating a novel PD transgenic mouse model (PD-mito-PstI mouse). These mice recapitulate most of the major features of PD: they have a motor phenotype that is reversible with l-DOPA treatment, a progressive neurodegeneration of the SN dopaminergic population, and striatal DA depletion. Our results also showed that behavioral phenotypes in PD-mito-PstI mice were associated with striatal dysfunctions preceding SN loss of tyrosine hydroxylase-positive neurons and that other neurotransmitter systems [noradrenaline (NE) and serotonin (5-HT)] were increased after the disruption of DA neurons, potentially as a compensatory mechanism. This transgenic mouse model provides a novel model to study the role of mitochondrial defects in the axonal projections of the striatum in the pathophysiology of PD.


Sujet(s)
Corps strié/métabolisme , Altération de l'ADN , ADN mitochondrial/métabolisme , Dopamine/métabolisme , Neurones/métabolisme , Maladie de Parkinson/métabolisme , Animaux , Numération cellulaire , ADN mitochondrial/génétique , Modèles animaux de maladie humaine , Souris , Souris transgéniques , Maladie de Parkinson/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE