Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 115
Filtrer
1.
Antiviral Res ; 228: 105940, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38901736

RÉSUMÉ

The flavivirus genus includes human pathogenic viruses such as Dengue (DENV), West Nile (WNV) and Zika virus (ZIKV) posing a global health threat due to limited treatment options. Host ion channels are crucial for various viral life cycle stages, but their potential as targets for antivirals is often not fully realized due to the lack of selective modulators. Here, we observe that treatment with ML2-SA1, an agonist for the human endolysosomal cation channel TRPML2, impairs ZIKV replication. Upon ML2-SA1 treatment, levels of intracellular genomes and number of released virus particles of two different ZIKV isolates were significantly reduced and cells displayed enlarged vesicular structures and multivesicular bodies with ZIKV envelope protein accumulation. However, no increased ZIKV degradation in lysosomal compartments was observed. Rather, the antiviral effect of ML2-SA1 seemed to manifest by the compound's negative impact on genome replication. Moreover, ML2-SA1 treatment also led to intracellular cholesterol accumulation. ZIKV and many other viruses including the Orthohepevirus Hepatitis E virus (HEV) rely on the endolysosomal system and are affected by intracellular cholesterol levels to complete their life cycle. Since we observed that ML2-SA1 also negatively impacted HEV infections in vitro, this compound may harbor a broader antiviral potential through perturbing the intracellular cholesterol distribution. Besides indicating that TRPML2 may be a promising target for combatting viral infections, we uncover a tentative connection between this protein and cholesterol distribution within the context of infectious diseases.

2.
J Virol ; : e0058024, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38856640

RÉSUMÉ

Hepatitis E virus (HEV) poses a global threat, which currently remains understudied in terms of host interactions. Epidermal growth factor receptor (EGFR) plays multifaceted roles in viral pathogenesis, impacting host-cell entry, viral replication, and host-defense modulation. On the one hand, EGFR signaling emerged as a major driver in innate immunity; on the other hand, a crosstalk between HEV and EGFR requires deeper analysis. We therefore aimed to dissect the receptor's involvement in the HEV life cycle. In persistently HEV-infected cells, the EGFR amount is decreased alongside with enhanced receptor internalization. As compared with the control ligand-induced EGFR, activation revealed an early receptor internalization and degradation in HEV-replicating cells, resulting in a notable EGFR signaling delay. Interestingly, inhibition or silencing of EGFR increased viral replication, extracellular and intracellular viral transcripts, and released infectious particles. The pro-viral impact of EGFR inhibition was attributed to (i) impaired expression of interferon-stimulated genes, (ii) activation of the autophagosomal system, (iii) virus-induced inhibition of lysosomal acidification, and (iv) a decrease of the cellular cholesterol level. IMPORTANCE: This study identifies epidermal growth factor receptor (EGFR) as a novel host factor affecting hepatitis E virus (HEV): EGFR downregulation promotes viral replication, release, and evasion from the innate immune response. The discovery that EGFR inhibition favors viral spread is particularly concerning for HEV patients undergoing EGFR inhibitor treatment.

3.
Arch Pharm (Weinheim) ; : e2400250, 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38809037

RÉSUMÉ

Three new series of macrocyclic active site-directed inhibitors of the Zika virus (ZIKV) NS2B-NS3 protease were synthesized. First, attempts were made to replace the basic P3 lysine residue of our previously described inhibitors with uncharged and more hydrophobic residues. This provided numerous compounds with inhibition constants between 30 and 50 nM. A stronger reduction of the inhibitory potency was observed when the P2 lysine was replaced by neutral residues, all of these inhibitors possess Ki values >1 µM. However, it is possible to replace the P2 lysine with the less basic 3-aminomethylphenylalanine, which provides a similarly potent inhibitor of the ZIKV protease (Ki = 2.69 nM). Crystal structure investigations showed that the P2 benzylamine structure forms comparable interactions with the protease as lysine. Twelve additional structures of these inhibitors in complex with the protease were determined, which explain many, but not all, SAR data obtained in this study. All individual modifications in the P2 or P3 position resulted in inhibitors with low antiviral efficacy in cell culture. Therefore, a third inhibitor series with combined modifications was synthesized; all of them contain a more hydrophobic  d-cyclohexylalanine in the linker segment. At a concentration of 40 µM, two of these compounds possess similar antiviral potency as ribavirin at 100 µM. Due to their reliable crystallization in complex with the ZIKV protease, these cyclic compounds are very well suited for a rational structure-based development of improved inhibitors.

4.
Nat Commun ; 15(1): 4182, 2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38755157

RÉSUMÉ

Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.


Sujet(s)
Antigènes CD19 , Moelle osseuse , Interleukines , Plasmocytes , Humains , Plasmocytes/immunologie , Interleukines/immunologie , Interleukines/métabolisme , Moelle osseuse/immunologie , Antigènes CD19/immunologie , Antigènes CD19/métabolisme , Immunité humorale/immunologie , COVID-19/immunologie , COVID-19/virologie , SARS-CoV-2/immunologie , Cellules de la moelle osseuse/immunologie , Cellules de la moelle osseuse/cytologie , Analyse sur cellule unique , Adulte , Lymphocytes B/immunologie , Cellules productrices d'anticorps/immunologie , Femelle , Mâle , Vaccination , Adulte d'âge moyen , Vaccin diphtérie-tétanos-coqueluche/immunologie
5.
J Virol ; 98(5): e0042424, 2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38629837

RÉSUMÉ

Chronic hepatitis B virus (HBV) infections are strongly associated with liver cirrhosis, inflammation, and hepatocellular carcinoma. In this context, the viral HBx protein is considered as a major factor influencing HBV-associated pathogenesis through deregulation of multiple cellular signaling pathways and is therefore a potential target for prognostic and therapeutic applications. However, HBV-associated pathogenesis differs significantly between genotypes, with the relevant factors and in particular the contribution of the genetic diversity of HBx being largely unknown. To address this question, we studied the specific genotype-dependent impact of HBx on cellular signaling pathways, focusing in particular on morphological and functional parameters of mitochondria. To exclusively investigate the impact of HBx of different genotypes on integrity and function of mitochondria in the absence of additional viral factors, we overexpressed HBx in Huh7 or HepG2 cells. Key signaling pathways were profiled by kinome analysis and correlated with expression levels of mitochondrial and pathogenic markers. Conclusively, HBx of genotypes A and G caused strong disruption of mitochondrial morphology alongside an induction of PTEN-induced putative kinase 1/Parkin-mediated mitophagy. These effects were only moderately dysregulated by genotypes B and E, whereas genotypes C and D exhibit an intermediate effect in this regard. Accordingly, changes in mitochondrial membrane potential and elevated reactive oxygen species production were associated with the HBx-mediated dysfunction among different genotypes. Also, genotype-related differences in mitophagy induction were identified and indicated that HBx-mediated changes in the mitochondria morphology and function strongly depend on the genotype. This indicates a relevant role of HBx in the process of genotype-dependent liver pathogenesis of HBV infections and reveals underlying mechanisms.IMPORTANCEThe hepatitis B virus is the main cause of chronic liver disease worldwide and differs in terms of pathogenesis and clinical outcome among the different genotypes. Furthermore, the viral HBx protein is a known factor in the progression of liver injury by inducing aberrant mitochondrial structures and functions. Consequently, the selective removal of dysfunctional mitochondria is essential to maintain overall cellular homeostasis and cell survival. Consistent with the intergenotypic difference of HBV, our data reveal significant differences regarding the impact of HBx of different genotypes on mitochondrial dynamic and function and thereby on radical oxygen stress levels within the cell. We subsequently observed that the induction of mitophagy differs significantly across the heterogenetic HBx proteins. Therefore, this study provides evidence that HBx-mediated changes in the mitochondria dynamics and functionality strongly depend on the genotype of HBx. This highlights an important contribution of HBx in the process of genotype-dependent liver pathogenesis.


Sujet(s)
Virus de l'hépatite B , Dynamique mitochondriale , Transduction du signal , Transactivateurs , Protéines virales régulatrices ou accessoires , Humains , Carcinome hépatocellulaire/virologie , Carcinome hépatocellulaire/métabolisme , Carcinome hépatocellulaire/anatomopathologie , Carcinome hépatocellulaire/génétique , Génotype , Cellules HepG2 , Virus de l'hépatite B/génétique , Virus de l'hépatite B/métabolisme , Virus de l'hépatite B/physiologie , Hépatite B chronique/virologie , Hépatite B chronique/métabolisme , Hépatite B chronique/anatomopathologie , Potentiel de membrane mitochondriale , Mitochondries/métabolisme , Mitophagie , Espèces réactives de l'oxygène/métabolisme , Transactivateurs/métabolisme , Transactivateurs/génétique , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Protéines virales régulatrices ou accessoires/métabolisme
6.
Antiviral Res ; 226: 105891, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38649071

RÉSUMÉ

Zoonoses such as ZIKV and SARS-CoV-2 pose a severe risk to global health. There is urgent need for broad antiviral strategies based on host-targets filling gaps between pathogen emergence and availability of therapeutic or preventive strategies. Significant reduction of pathogen titers decreases spread of infections and thereby ensures health systems not being overloaded and public life to continue. Based on previously observed interference with FGFR1/2-signaling dependent impact on interferon stimulated gene (ISG)-expression, we identified Pim kinases as promising druggable cellular target. We therefore focused on analyzing the potential of pan-Pim kinase inhibition to trigger a broad antiviral response. The pan-Pim kinase inhibitor AZD1208 exerted an extraordinarily high antiviral effect against various ZIKV isolates, SARS-CoV-2 and HBV. This was reflected by strong reduction in viral RNA, proteins and released infectious particles. Especially in case of SARS-CoV-2, AZD1208 led to a complete removal of viral traces in cells. Kinome-analysis revealed vast changes in kinase landscape upon AZD1208 treatment, especially for inflammation and the PI3K/Akt-pathway. For ZIKV, a clear correlation between antiviral effect and increase in ISG-expression was observed. Based on a cell culture model with impaired ISG-induction, activation of the PI3K-Akt-mTOR axis, leading to major changes in the endolysosomal equilibrium, was identified as second pillar of the antiviral effect triggered by AZD1208-dependent Pim kinase inhibition, also against HBV. We identified Pim-kinases as cellular target for a broad antiviral activity. The antiviral effect exerted by inhibition of Pim kinases is based on at least two pillars: innate immunity and modulation of the endolysosomal system.


Sujet(s)
Antiviraux , Immunité innée , Protéines proto-oncogènes c-akt , Protéines proto-oncogènes c-pim-1 , SARS-CoV-2 , Transduction du signal , Sérine-thréonine kinases TOR , Humains , Immunité innée/effets des médicaments et des substances chimiques , Antiviraux/pharmacologie , Sérine-thréonine kinases TOR/métabolisme , Protéines proto-oncogènes c-pim-1/antagonistes et inhibiteurs , Protéines proto-oncogènes c-pim-1/métabolisme , SARS-CoV-2/effets des médicaments et des substances chimiques , SARS-CoV-2/immunologie , Protéines proto-oncogènes c-akt/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Phosphatidylinositol 3-kinases/métabolisme , Lysosomes/effets des médicaments et des substances chimiques , Lysosomes/métabolisme , Virus Zika/effets des médicaments et des substances chimiques , Inhibiteurs de protéines kinases/pharmacologie , Animaux , Virus de l'hépatite B/effets des médicaments et des substances chimiques , Endosomes/effets des médicaments et des substances chimiques , Endosomes/métabolisme , Lignée cellulaire , COVID-19/immunologie , COVID-19/virologie , Traitements médicamenteux de la COVID-19 , Réplication virale/effets des médicaments et des substances chimiques , Dérivés du biphényle , Thiazolidines
7.
PLoS Pathog ; 20(2): e1011976, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38315728

RÉSUMÉ

Viral infections trigger the expression of interferons (IFNs) and interferon stimulated genes (ISGs), which are crucial to modulate an antiviral response. The human guanylate binding protein 1 (GBP1) is an ISG and exhibits antiviral activity against several viruses. In a previous study, GBP1 was described to impair replication of the hepatitis C virus (HCV). However, the impact of GBP1 on the HCV life cycle is still enigmatic. To monitor the expression and subcellular distribution of GBP1 and HCV we performed qPCR, Western blot, CLSM and STED microscopy, virus titration and reporter gene assays. In contrast to previous reports, we observed that HCV induces the expression of GBP1. Further, to induce GBP1 expression, the cells were stimulated with IFNγ. GBP1 modulation was achieved either by overexpression of GBP1-Wt or by siRNA-mediated knockdown. Silencing of GBP1 impaired the release of viral particles and resulted in intracellular HCV core accumulation, while overexpression of GBP1 favored viral replication and release. CLSM and STED analyses revealed a vesicular distribution of GBP1 in the perinuclear region. Here, it colocalizes with HCV core around lipid droplets, where it acts as assembly platform and thereby favors HCV morphogenesis and release. Collectively, our results identify an unprecedented function of GBP1 as a pro-viral factor. As such, it is essential for viral assembly and release acting through tethering factors involved in HCV morphogenesis onto the surface of lipid droplets.


Sujet(s)
Protéines G , Hepacivirus , Hépatite C , Humains , Hepacivirus/physiologie , Hépatite C/génétique , Interférons , Réplication virale , Protéines G/génétique
9.
Cell Mol Gastroenterol Hepatol ; 17(4): 589-605, 2024.
Article de Anglais | MEDLINE | ID: mdl-38190941

RÉSUMÉ

BACKGROUND: A peculiar feature of the hepatitis E virus (HEV) is its reliance on the exosomal route for viral release. Genomic replication is mediated via the viral polyprotein pORF1, yet little is known about its subcellular localization. METHODS: Subcellular localization of pORF1 and its subdomains, generated and cloned based on a structural prediciton of the viral replicase, was analyzed via confocal laser scanning microscopy. Exosomes released from cells were isolated via ultracentrifugation and analyzed by isopycnic density gradient centrifugation. This was followed by fluorimetry or Western blot analyses or reverse transcriptase-polymerase chain reaction to analyze separated particles in more detail. RESULTS: We found pORF1 to be accumulating within the endosomal system, most dominantly to multivesicular bodies (MVBs). Expression of the polyprotein's 7 subdomains revealed that the papain-like cysteine-protease (PCP) is the only domain localizing like the full-length protein. A PCP-deficient pORF1 mutant lost its association to MVBs. Strikingly, both pORF1 and PCP can be released via exosomes. Similarly, genomic RNA still is released via exosomes in the absence of pORF2/3. CONCLUSIONS: Taken together, we found that pORF1 localizes to MVBs in a PCP-dependent manner, which is followed by exosomal release. This reveals new aspects of HEV life cycle, because replication and release could be coupled at the endosomal interface. In addition, this may mediate capsid-independent spread or may facilitate the spread of viral infection, because genomes entering the cell during de novo infection readily encounter exosomally transferred pORF1.


Sujet(s)
Virus de l'hépatite E , Corps multivésiculaires/métabolisme , Protéines/métabolisme , Polyprotéines/métabolisme , Peptide hydrolases/métabolisme
10.
Viruses ; 15(8)2023 08 03.
Article de Anglais | MEDLINE | ID: mdl-37632029

RÉSUMÉ

Hepatitis D virus (HDV) is a defective RNA virus with a negative-strand RNA genome encompassing less than 1700 nucleotides. The HDV genome encodes only for one protein, the hepatitis delta antigen (HDAg), which exists in two forms acting as nucleoproteins. HDV depends on the envelope proteins of the hepatitis B virus as a helper virus for packaging its ribonucleoprotein complex (RNP). HDV is considered the causative agent for the most severe form of viral hepatitis leading to liver fibrosis/cirrhosis and hepatocellular carcinoma. Many steps of the life cycle of HDV are still enigmatic. This review gives an overview of the complete life cycle of HDV and identifies gaps in knowledge. The focus is on the description of cellular factors being involved in the life cycle of HDV and the deregulation of cellular pathways by HDV with respect to their relevance for viral replication, morphogenesis and HDV-associated pathogenesis. Moreover, recent progress in antiviral strategies targeting cellular structures is summarized in this article.


Sujet(s)
Virus de l'hépatite delta , Tumeurs du foie , Animaux , Virus de l'hépatite delta/génétique , Antigènes de l'hépatite virale delta , Antiviraux , Étapes du cycle de vie , Cirrhose du foie
11.
Sci Rep ; 13(1): 10820, 2023 07 04.
Article de Anglais | MEDLINE | ID: mdl-37402816

RÉSUMÉ

Escape mutations in the spike protein of SARS-CoV-2 are a major reason for Omicron breakthrough infections. After basal vaccination only very low titers of Omicron neutralizing antibodies are present. However, booster vaccinations induce higher titers against the Omicron variant. The neutralization of the Delta and Omicron variants by sera obtained 6 months after 3rd vaccination and 2 weeks or 6 months after 4th vaccination with a monovalent RNA vaccine (Spikevax) was analyzed. It was observed for the Omicron variant that 6 months after the fourth vaccination, the titer returns to the same very low neutralizing capacity as 6 months after the third vaccination. The Delta variant neutralizing capacity wanes with a comparable kinetic although the titers are higher as compared to the Omicron variant. This indicates that the fourth vaccination with a monovalent vaccine based on the ancestral isolate neither affects the kinetic of the waning nor the breadth of the humoral response.


Sujet(s)
COVID-19 , Immunité humorale , Humains , COVID-19/prévention et contrôle , SARS-CoV-2/génétique , Vaccination , Anticorps neutralisants , Anticorps antiviraux
12.
Am J Physiol Cell Physiol ; 325(1): C129-C140, 2023 07 01.
Article de Anglais | MEDLINE | ID: mdl-37273239

RÉSUMÉ

Liver cirrhosis is the end stage of all chronic liver diseases and contributes significantly to overall mortality of 2% globally. The age-standardized mortality from liver cirrhosis in Europe is between 10 and 20% and can be explained by not only the development of liver cancer but also the acute deterioration in the patient's overall condition. The development of complications including accumulation of fluid in the abdomen (ascites), bleeding in the gastrointestinal tract (variceal bleeding), bacterial infections, or a decrease in brain function (hepatic encephalopathy) define an acute decompensation that requires therapy and often leads to acute-on-chronic liver failure (ACLF) by different precipitating events. However, due to its complexity and organ-spanning nature, the pathogenesis of ACLF is poorly understood, and the common underlying mechanisms leading to the development of organ dysfunction or failure in ACLF are still elusive. Apart from general intensive care interventions, there are no specific therapy options for ACLF. Liver transplantation is often not possible in these patients due to contraindications and a lack of prioritization. In this review, we describe the framework of the ACLF-I project consortium funded by the Hessian Ministry of Higher Education, Research and the Arts (HMWK) based on existing findings and will provide answers to these open questions.


Sujet(s)
Insuffisance hépatique aigüe sur chronique , Maladie du foie en phase terminale , Varices oesophagiennes et gastriques , Humains , Maladie du foie en phase terminale/complications , Varices oesophagiennes et gastriques/complications , Hémorragie gastro-intestinale/complications , Cirrhose du foie/complications , Cirrhose du foie/thérapie , Insuffisance hépatique aigüe sur chronique/thérapie , Insuffisance hépatique aigüe sur chronique/étiologie
13.
Int J Mol Sci ; 24(5)2023 Mar 04.
Article de Anglais | MEDLINE | ID: mdl-36902395

RÉSUMÉ

The hepatitis B virus (HBV) counts as a major global health problem, as it presents a significant causative factor for liver-related morbidity and mortality. The development of hepatocellular carcinomas (HCC) as a characteristic of a persistent, chronic infection could be caused, among others, by the pleiotropic function of the viral regulatory protein HBx. The latter is known to modulate an onset of cellular and viral signaling processes with emerging influence in liver pathogenesis. However, the flexible and multifunctional nature of HBx impedes the fundamental understanding of related mechanisms and the development of associated diseases, and has even led to partial controversial results in the past. Based on the cellular distribution of HBx-nuclear-, cytoplasmic- or mitochondria-associated-this review encompasses the current knowledge and previous investigations of HBx in context of cellular signaling pathways and HBV-associated pathogenesis. In addition, particular focus is set on the clinical relevance and potential novel therapeutic applications in the context of HBx.


Sujet(s)
Carcinome hépatocellulaire , Hépatite B , Tumeurs du foie , Humains , Virus de l'hépatite B/métabolisme , Carcinome hépatocellulaire/métabolisme , Protéines virales régulatrices ou accessoires/métabolisme , Transactivateurs/métabolisme , Tumeurs du foie/métabolisme , Protéines virales/métabolisme
14.
Infection ; 51(4): 1093-1102, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-36913112

RÉSUMÉ

PURPOSE: COViK, a prospective hospital-based multicenter case-control study in Germany, aims to assess the effectiveness of COVID-19 vaccines against severe disease. Here, we report vaccine effectiveness (VE) against COVID-19-caused hospitalization and intensive care treatment during the Omicron wave. METHODS: We analyzed data from 276 cases with COVID-19 and 494 control patients recruited in 13 hospitals from 1 December 2021 to 5 September 2022. We calculated crude and confounder-adjusted VE estimates. RESULTS: 21% of cases (57/276) were not vaccinated, compared to 5% of controls (26/494; p < 0.001). Confounder-adjusted VE against COVID-19-caused hospitalization was 55.4% (95% CI: 12-78%), 81.5% (95% CI: 68-90%) and 95.6% (95%CI: 88-99%) after two, three and four vaccine doses, respectively. VE against hospitalization due to COVID-19 remained stable up to one year after three vaccine doses. CONCLUSION: Three vaccine doses remained highly effective in preventing severe disease and this protection was sustained; a fourth dose further increased protection.


Sujet(s)
COVID-19 , Humains , COVID-19/épidémiologie , COVID-19/prévention et contrôle , Vaccins contre la COVID-19 , Études cas-témoins , Études prospectives , , Allemagne/épidémiologie
15.
Vaccine ; 41(2): 290-293, 2023 01 09.
Article de Anglais | MEDLINE | ID: mdl-36509640

RÉSUMÉ

We included 852 patients in a prospectively recruiting multicenter matched case-control study in Germany to assess vaccine effectiveness (VE) in preventing COVID-19-associated hospitalization during the Delta-variant dominance. The two-dose VE was 89 % (95 % CI 84-93 %) overall, 79 % in patients with more than two comorbidities and 77 % in adults aged 60-75 years. A third dose increased the VE to more than 93 % in all patient-subgroups.


Sujet(s)
COVID-19 , Vaccins , Adulte , Humains , Études cas-témoins , COVID-19/prévention et contrôle , Hospitalisation , Hôpitaux , Allemagne/épidémiologie
17.
Cell Mol Gastroenterol Hepatol ; 15(1): 237-259, 2023.
Article de Anglais | MEDLINE | ID: mdl-36184032

RÉSUMÉ

BACKGROUND & AIMS: Hepatitis B virus (HBV) was identified as an enveloped DNA virus with a diameter of 42 nm. Multivesicular bodies play a central role in HBV egress and exosome biogenesis. In light of this, it was studied whether intact virions wrapped in exosomes are released by HBV-producing cells. METHODS: Robust methods for efficient separation of exosomes from virions were established. Exosomes were subjected to limited detergent treatment for release of viral particles. Electron microscopy of immunogold labeled ultrathin sections of purified exosomes was performed for characterization of exosomal HBV. Exosome formation/release was affected by inhibitors or Crispr/Cas-mediated gene silencing. Infectivity/uptake of exosomal HBV was investigated in susceptible and non-susceptible cells. RESULTS: Exosomes could be isolated from supernatants of HBV-producing cells, which are characterized by the presence of exosomal and HBV markers. These exosomal fractions could be separated from the fractions containing free virions. Limited detergent treatment of exosomes causes stepwise release of intact HBV virions and naked capsids. Inhibition of exosome morphogenesis impairs the release of exosome-wrapped HBV. Electron microscopy confirmed the presence of intact virions in exosomes. Moreover, the presence of large hepatitis B virus surface antigen on the surface of exosomes derived from HBV expressing cells was observed, which conferred exosome-encapsulated HBV initiating infection in susceptible cells in a , large hepatitis B virus surface antigen/Na+-taurocholate co-transporting polypeptide-dependent manner. The uptake of exosomal HBV with low efficiency was also observed in non-permissive cells. CONCLUSION: These data indicate that a fraction of intact HBV virions can be released as exosomes. This reveals a so far not described release pathway for HBV.


Sujet(s)
Exosomes , Hépatite B , Humains , Détergents/métabolisme , Virion , Hépatite B/métabolisme , Virus de l'hépatite B/génétique , Antigènes de surface/métabolisme
19.
Article de Allemand | MEDLINE | ID: mdl-36264321

RÉSUMÉ

The Paul-Ehrlich Institute (PEI) plays a central role in the release of vaccines in Germany as well as Europe. The experimental testing and release of each vaccine batch is carried out according to the procedures and regulations of the Official Control Authority Batch Release (OCABR) and the German medicine act paragraph 32. The independent testing aims to demonstrate the conformity of quality criteria set in the marketing authorization for each lot produced. This article illustrates both the batch release procedure in general and specifically for the newly developed and approved COVID-19 vaccines during the COVID-19 pandemic.


Sujet(s)
COVID-19 , Vaccins , Humains , Allemagne , Vaccins contre la COVID-19 , Pandémies/prévention et contrôle , COVID-19/prévention et contrôle , Vaccins/usage thérapeutique
20.
Article de Allemand | MEDLINE | ID: mdl-36257986

RÉSUMÉ

Currently (as of July 2022), six different COVID-19 vaccines are licensed in the EU. These include two mRNA-based vaccines (BNT162b2, Comirnaty® and mRNA-1273, Spikevax®), two adenoviral vector-based vaccines (AZD1222, Vaxzevria® and Ad26.COV2.S, Jcovden®), the subunit vaccine Nuvaxovid® (NVX-CoV2373), and the inactivated virus vaccine VLA2001. Although these vaccines are based on different technologies, they all share the use of the spike protein of SARS-CoV­2 as antigen.This overview describes the characteristics of their composition, their efficacy, and the impact of various factors on efficacy. Another aspect of this overview is the description of the approval process and the identification of factors that have contributed to the unprecedented speed in the development and approval of vaccines against a pandemic pathogen.


Sujet(s)
Vaccins contre la COVID-19 , COVID-19 , Humains , Ad26COVS1 , Vaccin BNT162 , Vaccin ChAdOx1 nCoV-19 , COVID-19/prévention et contrôle , Vaccins contre la COVID-19/usage thérapeutique , Allemagne , Vaccins à ARNm , SARS-CoV-2 , Technologie , Essais cliniques comme sujet
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...