Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 27
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
mSphere ; : e0025124, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39120135

RÉSUMÉ

Although most cyanobacteria grow in visible light (VL; λ = 400-700 nm), some cyanobacteria can also use far-red light (FRL; λ = 700-800 nm) for oxygenic photosynthesis by performing far-red light photoacclimation. These two types of cyanobacteria can be found in the same environment. However, how they respond to each other remains unknown. Here, we reveal that coculture stresses FRL-using Chlorogloeopsis fritschii PCC 9212 and VL-using Synechocystis sp. PCC 6803. No significant growth difference was found in Synechocystis sp. PCC 6803 between the coculture and the monoculture. Conversely, the growth of Chlorogloeopsis fritschii PCC 9212 was suppressed in VL under coculture. According to transcriptomic analysis, Chlorogloeopsis fritschii PCC 9212 in coculture shows low transcript levels of metabolic activities and high transcript levels of ion transporters, with the differences being more noticeable in VL than in FRL. The transcript levels of stress responses in coculture were likewise higher than in monoculture in Synechocystis sp. PCC 6803 under FRL. The low transcript level of metabolic activities in coculture or the inhibition of cyanobacterial growth indicates a possible negative interaction between these two cyanobacterial strains.IMPORTANCEThe interaction between two cyanobacterial species is the primary focus of this study. One species harvests visible light, while the other can harvest far-red and visible light. Prior research on cyanobacteria interaction concentrated on its interactions with algal, coral, and fungal species. Interactions between cyanobacterial species were, nevertheless, rarely discussed. Thus, we characterized the interaction between two cyanobacterial species, one capable of photosynthesis using far-red light and the other not. Through experimental and bioinformatic approaches, we demonstrate that when one cyanobacterium thrives under optimal light conditions, it stresses the remaining cyanobacterial species. We contribute to an ecological understanding of these two kinds of cyanobacteria distribution patterns. Cyanobacteria that utilize far-red light probably disperse in environments with limited visible light to avoid competition with other cyanobacteria. From a biotechnological standpoint, this study suggests that the simultaneous cultivation of two cyanobacterial species in large-scale cultivation facilities may reduce the overall biomass yield.

2.
NPJ Digit Med ; 7(1): 31, 2024 Feb 08.
Article de Anglais | MEDLINE | ID: mdl-38332372

RÉSUMÉ

The Motor Disorder Society's Unified Parkinson's Disease Rating Scale (MDS-UPDRS) is designed to assess bradykinesia, the cardinal symptoms of Parkinson's disease (PD). However, it cannot capture the all-day variability of bradykinesia outside the clinical environment. Here, we introduce FastEval Parkinsonism ( https://fastevalp.cmdm.tw/ ), a deep learning-driven video-based system, providing users to capture keypoints, estimate the severity, and summarize in a report. Leveraging 840 finger-tapping videos from 186 individuals (103 patients with Parkinson's disease (PD), 24 participants with atypical parkinsonism (APD), 12 elderly with mild parkinsonism signs (MPS), and 47 healthy controls (HCs)), we employ a dilated convolution neural network with two data augmentation techniques. Our model achieves acceptable accuracies (AAC) of 88.0% and 81.5%. The frequency-intensity (FI) value of thumb-index finger distance was indicated as a pivotal hand parameter to quantify the performance. Our model also shows the usability for multi-angle videos, tested in an external database enrolling over 300 PD patients.

3.
IEEE J Biomed Health Inform ; 28(2): 1066-1077, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38064333

RÉSUMÉ

We present PathoOpenGait, a cloud-based platform for comprehensive gait analysis. Gait assessment is crucial in neurodegenerative diseases such as Parkinson's and multiple system atrophy, yet current techniques are neither affordable nor efficient. PathoOpenGait utilizes 2D and 3D data from a binocular 3D camera for monitoring and analyzing gait parameters. Our algorithms, including a semi-supervised learning-boosted neural network model for turn time estimation and deterministic algorithms to estimate gait parameters, were rigorously validated on annotated gait records, demonstrating high precision and consistency. We further demonstrate PathoOpenGait's applicability in clinical settings by analyzing gait trials from Parkinson's patients and healthy controls. PathoOpenGait is the first open-source, cloud-based system for gait analysis, providing a user-friendly tool for continuous patient care and monitoring. It offers a cost-effective and accessible solution for both clinicians and patients, revolutionizing the field of gait assessment. PathoOpenGait is available at https://pathoopengait.cmdm.tw.


Sujet(s)
Analyse de démarche , Maladie de Parkinson , Humains , Démarche , Algorithmes , Apprentissage machine supervisé
4.
Mol Ecol Resour ; 24(1): e13871, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37772760

RÉSUMÉ

Although most cyanobacteria use visible light (VL; λ = 400-700 nm) for photosynthesis, some have evolved strategies to use far-red light (FRL; λ = 700-800 nm). These cyanobacteria are defined as far-red light-utilizing cyanobacteria (FRLCyano), including two groups: (1) chlorophyll d-producing Acaryochloris spp. and (2) polyphyletic cyanobacteria that produce chlorophylls d and f in response to FRL. Numerous ecological studies examine pigments, such as chlorophylls d and f, to investigate the presence of FRLCyano in the environment. This method is not ideal because it can only detect FRLCyano that have made chlorophylls d or f. Here we develop a new method, far-red cyanobacteria identification (FRCI), to identify FRLCyano based on 16S rRNA gene sequences. From public databases and published articles, 62 16S rRNA gene sequences of FRLCyano were extracted. Comparing with related lineages, we determined that 97% sequence identity is the optimal cut-off for distinguishing FRLCyano from other cyanobacteria. To test the method experimentally, we collected samples from 17 sites in Taipei, Taiwan, and conducted VL and FRL enrichments. Our results demonstrate that FRCI can detect FRLCyano during FRL enrichments more sensitively than pigment analysis. FRCI can also resolve the composition of FRLCyano at the genus level, which pigment analysis cannot do. In addition, we applied FRCI to published datasets and discovered putative FRLCyano in diverse environments, including soils, hot springs and deserts. Overall, our results indicate that FRCI is a sensitive and high-resolution method using 16S rRNA gene sequences to identify FRLCyano.


Sujet(s)
Cyanobactéries , , ARN ribosomique 16S/génétique , Gènes d'ARN ribosomique , Photosynthèse/génétique , Cyanobactéries/génétique
5.
Nat Commun ; 14(1): 8009, 2023 Dec 04.
Article de Anglais | MEDLINE | ID: mdl-38049400

RÉSUMÉ

Phycobilisomes (PBS) are antenna megacomplexes that transfer energy to photosystems II and I in thylakoids. PBS likely evolved from a basic, inefficient form into the predominant hemidiscoidal shape with radiating peripheral rods. However, it has been challenging to test this hypothesis because ancestral species are generally inaccessible. Here we use spectroscopy and cryo-electron microscopy to reveal a structure of a "paddle-shaped" PBS from a thylakoid-free cyanobacterium that likely retains ancestral traits. This PBS lacks rods and specialized ApcD and ApcF subunits, indicating relict characteristics. Other features include linkers connecting two chains of five phycocyanin hexamers (CpcN) and two core subdomains (ApcH), resulting in a paddle-shaped configuration. Energy transfer calculations demonstrate that chains are less efficient than rods. These features may nevertheless have increased light absorption by elongating PBS before multilayered thylakoids with hemidiscoidal PBS evolved. Our results provide insights into the evolution and diversification of light-harvesting strategies before the origin of thylakoids.


Sujet(s)
Cyanobactéries , Thylacoïdes , Thylacoïdes/métabolisme , Phycobilisomes/métabolisme , Cryomicroscopie électronique , Complexe protéique du photosystème I/métabolisme , Protéines bactériennes/métabolisme , Cyanobactéries/métabolisme
7.
ACS Synth Biol ; 12(4): 1320-1330, 2023 04 21.
Article de Anglais | MEDLINE | ID: mdl-36995145

RÉSUMÉ

As the demand for sustainable energy has increased, photoautotrophic cyanobacteria have become a popular platform for developing tools in synthetic biology. Although genetic tools are generally available for several model cyanobacteria, such tools have not yet been developed for many other strains potentially suitable for industrial applications. Additionally, most inducible promoters in cyanobacteria are controlled by chemical compounds, but adding chemicals into growth media on an industrial scale is neither cost-effective nor environmentally friendly. Although using light-controlled promoters is an alternative approach, only a cyanobacterial expression system inducible by green light has so far been described and employed for such applications. In this study, we have established a conjugation-based technique to express a reporter gene (eyfp) in the nonmodel cyanobacterium, Chlorogloeopsis fritschii PCC 9212. We also identified a promoter specifically activated by far-red light from the Far-Red Light Photoacclimation gene cluster of Leptolyngbya sp. JSC-1. This promoter, PchlFJSC1, was successfully used to drive eyfp expression. PchlFJSC1 is tightly regulated by light quality (i.e., wavelength) and leads to an approximately 30-fold increase in EYFP production when cells were exposed to far-red light. The induction level was controlled by the far-red light intensity, and induction stopped when cells were returned to visible light. This system has the potential for further applications in cyanobacteria by providing an additional choice of light wavelength to control gene expression. Collectively, this study developed a functional gene-expression system for C. fritschii PCC 9212 that can be regulated by exposing cells to far-red light.


Sujet(s)
Cyanobactéries , Cyanobactéries/génétique , Cyanobactéries/métabolisme , Lumière , Régions promotrices (génétique)/génétique
8.
J Formos Med Assoc ; 121(12): 2649-2652, 2022 Dec.
Article de Anglais | MEDLINE | ID: mdl-36031487

RÉSUMÉ

New psychoactive substances (NPS) have increasingly been illegally synthesized and used around the world in recent years. Due to the large volume and the variety of NPS, most do not have sufficient information about their addictive potential and harmful effects to human subjects. This makes it difficult to evaluate these potential substances of abuse. This study aims to build a database based on Taiwan's controlled substances, to provide quick structural and pharmacological feedback. Taiwan Controlled Substances Database (TCSD) includes the collection of controlled substances, relevant experimental and structural information, as well as computational features such as molecular fingerprints and descriptors. Two types of structural search were added: substructure search and topological fingerprint similarity search. A web framework was used to enhance accessibility and usability (https://cs2search.cmdm.tw).


Sujet(s)
Substances réglementées , Humains , Taïwan , Bases de données factuelles
9.
Appl Environ Microbiol ; 88(13): e0056222, 2022 07 12.
Article de Anglais | MEDLINE | ID: mdl-35727027

RÉSUMÉ

Some cyanobacteria can perform far-red light photoacclimation (FaRLiP), which allows them to use far-red light (FRL) for oxygenic photosynthesis. Most of the cyanobacteria able to use FRL were discovered in low visible-light (VL; λ = 400-700 nm) environments that are also enriched in FRL (λ = 700-800 nm). However, these cyanobacteria grow faster in VL than in FRL in laboratory conditions, indicating that FRL is not their preferred light source when VL is available. Therefore, it is interesting to understand why such strains were primarily found in FRL-enriched but not VL-enriched environments. To this aim, we established a terrestrial model system with quartz sand to study the distribution and photoacclimation of cyanobacterial strains. A FaRLiP-performing cyanobacterium, Leptolyngbya sp. JSC-1, and a VL-utilizing model cyanobacterium, Synechocystis sp. PCC 6803, were compared in this study. We found that, although Leptolyngbya sp. JSC-1 can grow well in both VL and FRL, Synechocystis sp. PCC 6803 grows much faster than Leptolyngbya sp. JSC-1 in VL. In addition, the growth was higher in liquid cocultures than in monocultures of Leptolyngbya sp. JSC-1 or Synechocystis sp. PCC 6803. In an artificial terrestrial model system, Leptolyngbya sp. JSC-1 has an advantage when growing in coculture at greater depths by performing FaRLiP. Therefore, strong competition for VL and slower growth rate are possible reasons why FRL-utilizing cyanobacteria are found in environments with low VL intensities. This model system provides a valuable tool for future studies of cyanobacterial ecological niches and interactions in a terrestrial environment. IMPORTANCE This study uses sand columns to establish a terrestrial model system for the investigation of the distribution and acclimation of cyanobacteria to far-red light. Previous studies of this group of cyanobacteria required direct in situ samplings. The variability of conditions and abundances of the cyanobacteria in natural settings impeded detailed analyses and comparisons. Therefore, we established this model system under controlled conditions in the laboratory. In this system, the distribution and acclimation of two cyanobacteria were similar to the situation observed in natural environments, which validates that it can be used to study fundamental questions. Using this approach, we made the unanticipated observation that two cyanobacteria grow faster in coculture than in axenic cultures. This laboratory-based model system can provide a valuable new tool for comparing cyanobacterial strains (e.g., mutants and wild type), exploring interactions between cyanobacterial strains and interactions with other bacteria, and characterizing ecological niches of cyanobacteria.


Sujet(s)
Acclimatation , Cyanobactéries , Synechocystis , Cyanobactéries/effets des radiations , Lumière , Photosynthèse , Quartz , Sable , Synechocystis/effets des radiations
10.
Sci Adv ; 8(6): eabj4437, 2022 Feb 11.
Article de Anglais | MEDLINE | ID: mdl-35138895

RÉSUMÉ

Cyanobacteria are ubiquitous in nature and have developed numerous strategies that allow them to live in a diverse range of environments. Certain cyanobacteria synthesize chlorophylls d and f to acclimate to niches enriched in far-red light (FRL) and incorporate paralogous photosynthetic proteins into their photosynthetic apparatus in a process called FRL-induced photoacclimation (FaRLiP). We characterized the macromolecular changes involved in FRL-driven photosynthesis and used atomic force microscopy to examine the supramolecular organization of photosystem I associated with FaRLiP in three cyanobacterial species. Mass spectrometry showed the changes in the proteome of Chroococcidiopsis thermalis PCC 7203 that accompany FaRLiP. Fluorescence lifetime imaging microscopy and electron microscopy reveal an altered cellular distribution of photosystem complexes and illustrate the cell-to-cell variability of the FaRLiP response.

11.
J Biol Chem ; 298(1): 101408, 2022 01.
Article de Anglais | MEDLINE | ID: mdl-34793839

RÉSUMÉ

Far-red light photoacclimation exhibited by some cyanobacteria allows these organisms to use the far-red region of the solar spectrum (700-800 nm) for photosynthesis. Part of this process includes the replacement of six photosystem I (PSI) subunits with isoforms that confer the binding of chlorophyll (Chl) f molecules that absorb far-red light (FRL). However, the exact sites at which Chl f molecules are bound are still challenging to determine. To aid in the identification of Chl f-binding sites, we solved the cryo-EM structure of PSI from far-red light-acclimated cells of the cyanobacterium Synechococcus sp. PCC 7335. We identified six sites that bind Chl f with high specificity and three additional sites that are likely to bind Chl f at lower specificity. All of these binding sites are in the core-antenna regions of PSI, and Chl f was not observed among the electron transfer cofactors. This structural analysis also reveals both conserved and nonconserved Chl f-binding sites, the latter of which exemplify the diversity in FRL-PSI among species. We found that the FRL-PSI structure also contains a bound soluble ferredoxin, PetF1, at low occupancy, which suggests that ferredoxin binds less transiently than expected according to the canonical view of ferredoxin-binding to facilitate electron transfer. We suggest that this may result from structural changes in FRL-PSI that occur specifically during FRL photoacclimation.


Sujet(s)
Ferrédoxines , Complexe protéique du photosystème I , Synechococcus , Chlorophylle/métabolisme , Ferrédoxines/métabolisme , Lumière , Photosynthèse , Complexe protéique du photosystème I/métabolisme , Synechococcus/métabolisme
12.
J Biol Chem ; 298(1): 101424, 2022 01.
Article de Anglais | MEDLINE | ID: mdl-34801554

RÉSUMÉ

Far-red light (FRL) photoacclimation in cyanobacteria provides a selective growth advantage for some terrestrial cyanobacteria by expanding the range of photosynthetically active radiation to include far-red/near-infrared light (700-800 nm). During this photoacclimation process, photosystem II (PSII), the water:plastoquinone photooxidoreductase involved in oxygenic photosynthesis, is modified. The resulting FRL-PSII is comprised of FRL-specific core subunits and binds chlorophyll (Chl) d and Chl f molecules in place of several of the Chl a molecules found when cells are grown in visible light. These new Chls effectively lower the energy canonically thought to define the "red limit" for light required to drive photochemical catalysis of water oxidation. Changes to the architecture of FRL-PSII were previously unknown, and the positions of Chl d and Chl f molecules had only been proposed from indirect evidence. Here, we describe the 2.25 Å resolution cryo-EM structure of a monomeric FRL-PSII core complex from Synechococcus sp. PCC 7335 cells that were acclimated to FRL. We identify one Chl d molecule in the ChlD1 position of the electron transfer chain and four Chl f molecules in the core antenna. We also make observations that enhance our understanding of PSII biogenesis, especially on the acceptor side of the complex where a bicarbonate molecule is replaced by a glutamate side chain in the absence of the assembly factor Psb28. In conclusion, these results provide a structural basis for the lower energy limit required to drive water oxidation, which is the gateway for most solar energy utilization on earth.


Sujet(s)
Chlorophylle , Complexe protéique du photosystème II , Synechococcus , Chlorophylle/métabolisme , Lumière , Photosynthèse , Complexe protéique du photosystème I/métabolisme , Complexe protéique du photosystème II/métabolisme , Synechococcus/métabolisme , Eau/métabolisme
13.
J Vis Exp ; (177)2021 11 10.
Article de Anglais | MEDLINE | ID: mdl-34842241

RÉSUMÉ

In cyanobacteria, phycobilisome is a vital antenna protein complex that harvests light and transfers energy to photosystem I and II for photochemistry. Studying the structure and composition of phycobilisome is of great interest to scientists because it reveals the evolution and divergence of photosynthesis in cyanobacteria. This protocol provides a detailed and optimized method to break cyanobacterial cells at low cost by a bead-beater efficiently. The intact phycobilisome can then be isolated from the cell extract by sucrose gradient ultracentrifugation. This method has demonstrated being suitable for both model and non-model cyanobacteria with different cell types. A step-by-step procedure is also provided to confirm the integrity and property of phycobiliproteins by 77K fluorescence spectroscopy and SDS-PAGE stained by zinc sulfate and Coomassie Blue. The isolated phycobilisome can also be subjected to further structural and compositional analyses. Overall, this protocol provides a helpful starting guide that allows researchers unfamiliar with cyanobacteria to quickly isolate and characterize intact phycobilisome.


Sujet(s)
Cyanobactéries , Phycobilisomes , Cyanobactéries/métabolisme , Photosynthèse , Complexe protéique du photosystème II/métabolisme , Phycobilisomes/composition chimique , Phycobilisomes/métabolisme , Protéines/métabolisme , Spectrométrie de fluorescence
14.
Curr Biol ; 31(13): 2857-2867.e4, 2021 07 12.
Article de Anglais | MEDLINE | ID: mdl-33989529

RÉSUMÉ

Cyanobacteria have played pivotal roles in Earth's geological history, especially during the rise of atmospheric oxygen. However, our ability to infer the early transitions in Cyanobacteria evolution has been limited by their extremely lopsided tree of life-the vast majority of extant diversity belongs to Phycobacteria (or "crown Cyanobacteria"), while its sister lineage, Gloeobacteria, is depauperate and contains only two closely related species of Gloeobacter and a metagenome-assembled genome. Here, we describe a new cultured member of Gloeobacteria, Anthocerotibacter panamensis, isolated from a tropical hornwort. Anthocerotibacter diverged from Gloeobacter over 1.4 Ga ago and has low 16S rDNA identities with environmental samples. Our ultrastructural, physiological, and genomic analyses revealed that this species possesses a unique combination of traits that are exclusively shared with either Gloeobacteria or Phycobacteria. For example, similar to Gloeobacter, it lacks thylakoids and circadian clock genes, but the carotenoid biosynthesis pathway is typical of Phycobacteria. Furthermore, Anthocerotibacter has one of the most reduced gene sets for photosystems and phycobilisomes among Cyanobacteria. Despite this, Anthocerotibacter is capable of oxygenic photosynthesis under a wide range of light intensities, albeit with much less efficiency. Given its key phylogenetic position, distinct trait combination, and availability as a culture, Anthocerotibacter opens a new window to further illuminate the dawn of oxygenic photosynthesis.


Sujet(s)
Cyanobactéries , Thylacoïdes , Cyanobactéries/génétique , Oxygène/métabolisme , Photosynthèse/physiologie , Phylogenèse , Thylacoïdes/métabolisme
15.
Bioinformatics ; 37(8): 1184-1186, 2021 05 23.
Article de Anglais | MEDLINE | ID: mdl-32915954

RÉSUMÉ

SUMMARY: Drug discovery targeting G protein-coupled receptors (GPCRs), the largest known class of therapeutic targets, is challenging. To facilitate the rapid discovery and development of GPCR drugs, we built a system, PanGPCR, to predict multiple potential GPCR targets and their expression locations in the tissues, side effects and possible repurposing of GPCR drugs. With PanGPCR, the compound of interest is docked to a library of 36 experimentally determined crystal structures comprising of 46 docking sites for human GPCRs, and a ranked list is generated from the docking studies to assess all GPCRs and their binding affinities. Users can determine a given compound's GPCR targets and its repurposing potential accordingly. Moreover, potential side effects collected from the SIDER (Side-Effect Resource) database and mapped to 45 tissues and organs are provided by linking predicted off-targets and their expressed sequence tag profiles. With PanGPCR, multiple targets, repurposing potential and side effects can be determined by simply uploading a small ligand. AVAILABILITY AND IMPLEMENTATION: PanGPCR is freely accessible at https://gpcrpanel.cmdm.tw/index.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Sujet(s)
Repositionnement des médicaments , Récepteurs couplés aux protéines G , Découverte de médicament , Humains , Ligands , Récepteurs couplés aux protéines G/génétique
16.
Biochim Biophys Acta Bioenerg ; 1861(8): 148206, 2020 08 01.
Article de Anglais | MEDLINE | ID: mdl-32305412

RÉSUMÉ

The heterologous expression of the far-red absorbing chlorophyll (Chl) f in organisms that do not synthesize this pigment has been suggested as a viable solution to expand the solar spectrum that drives oxygenic photosynthesis. In this study, we investigate the functional binding of Chl f to the Photosystem I (PSI) of the cyanobacterium Synechococcus 7002, which has been engineered to express the Chl f synthase gene. By optimizing growth light conditions, one-to-four Chl f pigments were found in the complexes. By using a range of spectroscopic techniques, isolated PSI trimeric complexes were investigated to determine how the insertion of Chl f affects excitation energy transfer and trapping efficiency. The results show that the Chls f are functionally connected to the reaction center of the PSI complex and their presence does not change the overall pigment organization of the complex. Chl f substitutes Chl a (but not the Chl a red forms) while maintaining efficient energy transfer within the PSI complex. At the same time, the introduction of Chl f extends the photosynthetically active radiation of the new hybrid PSI complexes up to 750 nm, which is advantageous in far-red light enriched environments. These conclusions provide insights to engineer the photosynthetic machinery of crops to include Chl f and therefore increase the light-harvesting capability of photosynthesis.


Sujet(s)
Chlorophylle/analogues et dérivés , Lumière , Complexe protéique du photosystème I/métabolisme , Synechococcus/enzymologie , Chlorophylle/métabolisme , Transfert d'énergie , Liaison aux protéines
17.
Sci Adv ; 6(6): eaay6415, 2020 02.
Article de Anglais | MEDLINE | ID: mdl-32076649

RÉSUMÉ

Phototrophic organisms are superbly adapted to different light environments but often must acclimate to challenging competition for visible light wavelengths in their niches. Some cyanobacteria overcome this challenge by expressing paralogous photosynthetic proteins and by synthesizing and incorporating ~8% chlorophyll f into their Photosystem I (PSI) complexes, enabling them to grow under far-red light (FRL). We solved the structure of FRL-acclimated PSI from the cyanobacterium Fischerella thermalis PCC 7521 by single-particle, cryo-electron microscopy to understand its structural and functional differences. Four binding sites occupied by chlorophyll f are proposed. Subtle structural changes enable FRL-adapted PSI to extend light utilization for oxygenic photosynthesis to nearly 800 nm. This structure provides a platform for understanding FRL-driven photosynthesis and illustrates the robustness of adaptive and acclimation mechanisms in nature.


Sujet(s)
Lumière , Modèles moléculaires , Photosynthèse , Complexe protéique du photosystème I/composition chimique , Complexe protéique du photosystème I/métabolisme , Séquence d'acides aminés , Sites de fixation , Cryomicroscopie électronique , Pigments biologiques/composition chimique , Liaison aux protéines , Conformation des protéines , Relation structure-activité
18.
Biochim Biophys Acta Bioenerg ; 1861(4): 148064, 2020 04 01.
Article de Anglais | MEDLINE | ID: mdl-31421078

RÉSUMÉ

Some cyanobacteria remodel their photosynthetic apparatus by a process known as Far-Red Light Photoacclimation (FaRLiP). Specific subunits of the phycobilisome (PBS), photosystem I (PSI), and photosystem II (PSII) complexes produced in visible light are replaced by paralogous subunits encoded within a conserved FaRLiP gene cluster when cells are grown in far-red light (FRL; λ = 700-800 nm). FRL-PSII complexes from the FaRLiP cyanobacterium, Synechococcus sp. PCC 7335, were purified and shown to contain Chl a, Chl d, Chl f, and pheophytin a, while FRL-PSI complexes contained only Chl a and Chl f. The spectroscopic properties of purified photosynthetic complexes from Synechococcus sp. PCC 7335 were determined individually, and energy transfer kinetics among PBS, PSII, and PSI were analyzed by time-resolved fluorescence (TRF) spectroscopy. Direct energy transfer from PSII to PSI was observed in cells (and thylakoids) grown in red light (RL), and possible routes of energy transfer in both RL- and FRL-grown cells were inferred. Three structural arrangements for RL-PSI were observed by atomic force microscopy of thylakoid membranes, but only arrays of trimeric FRL-PSI were observed in thylakoids from FRL-grown cells. Cells grown in FRL synthesized the FRL-specific complexes but also continued to synthesize some PBS and PSII complexes identical to those produced in RL. Although the light-harvesting efficiency of photosynthetic complexes produced in FRL might be lower in white light than the complexes produced in cells acclimated to white light, the FRL-complexes provide cells with the flexibility to utilize both visible and FRL to support oxygenic photosynthesis. This article is part of a Special Issue entitled Light harvesting, edited by Dr. Roberta Croce.


Sujet(s)
Acclimatation/effets des radiations , Transfert d'énergie/effets des radiations , Lumière , Photosynthèse/effets des radiations , Synechococcus/physiologie , Chlorophylle/métabolisme , Complexe protéique du photosystème I/métabolisme , Complexe protéique du photosystème II/métabolisme , Phycobilisomes/métabolisme , Spectrométrie de fluorescence , Synechococcus/effets des radiations
19.
Photosynth Res ; 143(1): 81-95, 2020 Jan.
Article de Anglais | MEDLINE | ID: mdl-31760552

RÉSUMÉ

Some terrestrial cyanobacteria acclimate to and utilize far-red light (FRL; λ = 700-800 nm) for oxygenic photosynthesis, a process known as far-red light photoacclimation (FaRLiP). A conserved, 20-gene FaRLiP cluster encodes core subunits of Photosystem I (PSI) and Photosystem II (PSII), five phycobiliprotein subunits of FRL-bicylindrical cores, and enzymes for synthesis of chlorophyll (Chl) f and possibly Chl d. Deletion mutants for each of the five apc genes of the FaRLiP cluster were constructed in Synechococcus sp. PCC 7335, and all had similar phenotypes. When the mutants were grown in white (WL) or red (RL) light, the cells closely resembled the wild-type (WT) strain grown under the same conditions. However, the WT and mutant strains were very different when grown under FRL. Mutants grown in FRL were unable to assemble FRL-bicylindrical cores, were essentially devoid of FRL-specific phycobiliproteins, but retained RL-type phycobilisomes and WL-PSII. The transcript levels for genes of the FaRLiP cluster in the mutants were similar to those in WT. Surprisingly, the Chl d contents of the mutant strains were greatly reduced (~ 60-99%) compared to WT and so were the levels of FRL-PSII. We infer that Chl d may be essential for the assembly of FRL-PSII, which does not accumulate to normal levels in the mutants. We further infer that the cysteine-rich subunits of FRL allophycocyanin may either directly participate in the synthesis of Chl d or that FRL bicylindrical cores stabilize FRL-PSII to prevent loss of Chl d.


Sujet(s)
Chlorophylle/métabolisme , Lumière , Phycocyanine/métabolisme , Chlorophylle/analogues et dérivés , Chlorophylle/composition chimique , Régulation de l'expression des gènes bactériens , Gènes bactériens , Modèles moléculaires , Famille multigénique , Mutation/génétique , Phycobilisomes/métabolisme , Protéomique , Spectrométrie de fluorescence , Synechococcus/génétique , Synechococcus/croissance et développement , Synechococcus/métabolisme , Synechococcus/effets des radiations
20.
Front Microbiol ; 10: 465, 2019.
Article de Anglais | MEDLINE | ID: mdl-30918500

RÉSUMÉ

Some terrestrial cyanobacteria can acclimate to and then utilize far-red light (FRL; λ = 700-800 nm) to perform oxygenic photosynthesis through a process called Far-Red Light Photoacclimation (FaRLiP). During FaRLiP, cells synthesize chlorophylls (Chl) d and Chl f and extensively remodel their photosynthetic apparatus by modifying core subunits of photosystem (PS)I, PSII, and the phycobilisome (PBS). Three regulatory proteins, RfpA, RfpB, and RfpC, are encoded in the FaRLiP gene cluster; they sense FRL and control the synthesis of Chl f and expression of the FaRLiP gene cluster. It was previously uncertain if Chl d synthesis and other physiological and metabolic changes to FRL are regulated by RfpABC. In this study we show that Chl d synthesis is regulated by RfpABC; however, most other transcriptional changes leading to the FRL physiological state are not regulated by RfpABC. Surprisingly, we show that erythromycin induces Chl d synthesis in vivo. Transcriptomic and pigment analyses indicate that thiol compounds and/or cysteine proteases could be involved in Chl d synthesis in FRL. We conclude that the protein(s) responsible for Chl d synthesis is/are probably encoded within the FaRLiP gene cluster. Transcriptional responses to FRL help cells to conserve and produce energy and reducing power to overcome implicit light limitation of photosynthesis during the initial acclimation process to FRL.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE