Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Arch Environ Contam Toxicol ; 86(4): 346-362, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38743081

RÉSUMÉ

It is postulated that below a transcriptomic-based point of departure, adverse effects are unlikely to occur, thereby providing a chemical concentration to use in screening level hazard assessment. The present study extends previous work describing a high-throughput fathead minnow assay that can provide full transcriptomic data after exposure to a test chemical. One-day post-hatch fathead minnows were exposed to ten concentrations of three representatives of four chemical modes of action: organophosphates, ecdysone receptor agonists, plant photosystem II inhibitors, and estrogen receptor agonists for 24 h. Concentration response modeling was performed on whole body gene expression data from each exposure, using measured chemical concentrations when available. Transcriptomic points of departure in larval fathead minnow were lower than apical effect concentrations across fish species but not always lower than toxic effect concentrations in other aquatic taxa like crustaceans and insects. The point of departure was highly dependent on measured chemical concentration which were often lower than the nominal concentration. Differentially expressed genes between chemicals within modes of action were compared and often showed statistically significant overlap. In addition, reproducibility between identical exposures using a positive control chemical (CuSO4) and variability associated with the transcriptomic point of departure using in silico sampling were considered. Results extend a transcriptomic-compatible fathead minnow high-throughput assay for possible use in ecological hazard screening.


Sujet(s)
Cyprinidae , Larve , Transcriptome , Polluants chimiques de l'eau , Animaux , Transcriptome/effets des médicaments et des substances chimiques , Polluants chimiques de l'eau/toxicité , Larve/effets des médicaments et des substances chimiques
2.
Environ Toxicol Chem ; 2024 Feb 28.
Article de Anglais | MEDLINE | ID: mdl-38415853

RÉSUMÉ

Traditional toxicity testing has been unable to keep pace with the introduction of new chemicals into commerce. Consequently, there are limited or no toxicity data for many chemicals to which fish and wildlife may be exposed. Per- and polyfluoroalkyl substances (PFAS) are emblematic of this issue in that ecological hazards of most PFAS remain uncharacterized. The present study employed a high-throughput assay to identify the concentration at which 20 PFAS, with diverse properties, elicited a concerted gene expression response (termed a transcriptomics-based point of departure [tPOD]) in larval fathead minnows (Pimephales promelas; 5-6 days postfertilization) exposed for 24 h. Based on a reduced transcriptome approach that measured whole-body expression of 1832 genes, the median tPOD for the 20 PFAS tested was 10 µM. Longer-chain carboxylic acids (12-13 C-F); an eight-C-F dialcohol, N-alkyl sulfonamide; and telomer sulfonic acid were among the most potent PFAS, eliciting gene expression responses at concentrations <1 µM. With a few exceptions, larval fathead minnow tPODs were concordant with those based on whole-transcriptome response in human cell lines. However, larval fathead minnow tPODs were often greater than those for Daphnia magna exposed to the same PFAS. The tPODs overlapped concentrations at which other sublethal effects have been reported in fish (available for 10 PFAS). Nonetheless, fathead minnow tPODs were orders of magnitude higher than aqueous PFAS concentrations detected in tributaries of the North American Great Lakes, suggesting a substantial margin of safety. Overall, results broadly support the use of a fathead minnow larval transcriptomics assay to derive screening-level potency estimates for use in ecological risk-based prioritization. Environ Toxicol Chem 2024;00:1-16. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

3.
Environ Sci Technol ; 57(9): 3794-3803, 2023 03 07.
Article de Anglais | MEDLINE | ID: mdl-36800546

RÉSUMÉ

Given concerns about potential toxicological hazards of the thousands of data-poor per- and polyfluorinated alkyl substances (PFAS) currently in commerce and detected in the environment, tiered testing strategies that employ high-throughput in vitro screening as an initial testing tier have been implemented. The present study evaluated the effectiveness of previous in vitro screening for identifying PFAS capable, or incapable, of inducing estrogenic responses in fish exposed in vivo. Fathead minnows (Pimephales promelas) were exposed for 96 h to five PFAS (perfluorooctanoic acid [PFOA]; 1H,1H,8H,8H-perfluorooctane-1,8-diol [FC8-diol]; 1H,1H,10H,10H-perfluorodecane-1,10-diol [FC10-diol]; 1H,1H,8H,8H-perfluoro-3,6-dioxaoctane-1,8-diol [FC8-DOD]; and perfluoro-2-methyl-3-oxahexanoic acid [HFPO-DA]) that showed varying levels of in vitro estrogenic potency. In agreement with in vitro screening results, exposure to FC8-diol, FC10-diol, and FC8-DOD caused concentration-dependent increases in the expression of transcript coding for vitellogenin and estrogen receptor alpha and reduced expression of insulin-like growth factor and apolipoprotein eb. Once differences in bioconcentration were accounted for, the rank order of potency in vivo matched that determined in vitro. These results provide a screening level benchmark for worst-case estimates of potential estrogenic hazards of PFAS and a basis for identifying structurally similar PFAS to scrutinize for putative estrogenic activity.


Sujet(s)
Acides alcanesulfoniques , Cyprinidae , Fluorocarbones , Animaux , Oestrogènes/métabolisme , Oestrone/métabolisme , Acides alcanesulfoniques/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...