Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Ann Biomed Eng ; 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39136890

RÉSUMÉ

PURPOSE: This study aimed to assess the feasibility of early detection of fatigued gait patterns for older adults through the development of a smart portable device. METHODS: The smart device incorporated seven force sensors and a single inertial measurement unit (IMU) to measure regional plantar forces and foot kinematics. Data were collected from 18 older adults walking briskly on a treadmill for 60 min. The optimal feature set for each recognition model was determined using forward sequential feature selection in a wrapper fashion through fivefold cross-validation. The recognition model was selected from four machine learning models through leave-one-subject-out cross-validation. RESULTS: Five selected characteristics that best represented the state of fatigue included impulse at the medial and lateral arches (increased, p = 0.002 and p < 0.001), contact angle and rotation range of angle in the sagittal plane (increased, p < 0.001), and the variability of the resultant swing angular acceleration (decreased, p < 0.001). The detection accuracy based on the dual signal source of IMU and plantar force was 99%, higher than the 95% accuracy based on the single source. The intelligent portable device demonstrated excellent generalization (ranging from 93 to 100%), real-time performance (2.79 ms), and portability (32 g). CONCLUSION: The proposed smart device can detect fatigue patterns with high precision and in real time. SIGNIFICANCE: The application of this device possesses the potential to reduce the injury risk for older adults related to fatigue during gait.

2.
Gait Posture ; 101: 145-153, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36841121

RÉSUMÉ

BACKGROUND: Lower extremity muscle fatigue affects gait stability and increases the probability of injuries in the elderly. RESEARCH QUESTION: How does prolonged walking-induced fatigue affect lower limb muscle activity, plantar pressure distribution, and tripping risk? METHODS: Eighteen elderly adults walked fast on a treadmill for 60 minutes at a fixed speed. The plantar pressure was measured with an in-shoe monitoring system, eight lower limb muscles were monitored using surface electromyography, and foot movements were tracked by a motion capture analysis system. The above data and participants' subjective fatigue level feedback were collected every 5 minutes. Statistical analysis used the Friedman one-way repeated measures analysis of variance by ranks test followed by Wilcoxon signed-ranks test with Benjamini-Hochberg stepwise correction. RESULTS: The subjective reported fatigue on the Borg scale increased gradually from 1 to 6 (p = 0.001) during the 60 minutes, while the EMG amplitude of vastus medialis significant decreased (p = 0.013). The results of plantar pressure demonstrated that the distribution of load and impulse shifted medially in both the heel and arch regions while shifted laterally in both the toes and metatarsal regions. The significantly increased contact area supports this shift at the medial arch (p = 0.036, increased by 6.94%, the 60th minute vs. the baseline). The symmetry of medial-lateral plantar force increased at the toes, metatarsal, and arch regions. The significantly increased parameters also include the swing time and contact time. The minimum foot clearance was reduced, increasing tripping probability, not significantly, though. SIGNIFICANCE: This study facilitates a better understanding of changes in lower limb muscle activity and gait parameters during prolonged fast walking. Besides, this study has good guiding significance for developing smart devices based on plantar force, inertial measurement units, and EMG sensors to monitor changes in muscle activation in real-time and prevent tripping.


Sujet(s)
Démarche , Fatigue musculaire , Humains , Sujet âgé , Démarche/physiologie , Marche à pied/physiologie , Membre inférieur/physiologie , Pied/physiologie
3.
J Orthop Translat ; 38: 32-43, 2023 Jan.
Article de Anglais | MEDLINE | ID: mdl-36313976

RÉSUMÉ

Objective, Total talar replacement (TTR) using a customised talus prosthesis is an emerging surgical alternative to conventional total ankle arthroplasty (TAA) for treating ankle problems. Upon satisfying clinical reports in the literature, this study explored the advantages of TTR in restoring foot biomechanics during walking compared with TAA through computational simulations.Methods, A dynamic finite element foot model was built from the MRIs of a healthy participant and modified into two implanted counterparts (TTR and TAA) by incorporating the corresponding prosthetic components into the ankle joint. Twenty bony parts, thirty-nine ligament/tendon units, nine muscle contractors, and bulk soft tissue were included in the intact foot model. The TTR prosthesis was reconstructed from the mirror image data of the participant's contralateral talus and the TAA prosthesis was modelled by reproducing the Scandinavian ankle replacement procedure in the model assembly. The model was meshed with explicit deformable elements and validated against existing experimental studies that have assessed specific walking scenarios. Simulations were performed using the boundary conditions (time-variant matrix of muscle forces, segment orientation, and ground reaction forces) derived from motion capture analyses and musculoskeletal modelling of the participant's walking gait. Outcome variables, including foot kinematics, joint loading, and plantar pressure were reported and compared among the three model conditions. Results: Linear regression indicated a better agreement between the TTR model and intact foot model in plots of joint motions and foot segment movements during walking (R2 â€‹= â€‹0.721-0.993) than between the TAA and intact foot (R2 â€‹= â€‹0.623-0.990). TAA reduced talocrural excursion by 21.36%-31.92% and increased (MTP) dorsiflexion by 3.03%. Compared with the intact foot, TTR and TAA increased the midtarsal joint contact force by 17.92% and 10.73% respectively. The proximal-to-distal force transmission within the midfoot was shifted to the lateral column in TTR (94.52% or 210.54 â€‹N higher) while concentrated on the medial column in TAA (41.58% or 27.55 â€‹N higher). The TTR produced a plantar pressure map similar to that of the intact foot. TAA caused the plantar pressure centre to drift medially and increased the peak forefoot pressure by 7.36% in the late stance. Conclusion: The TTR better reproduced the foot joint motions, segment movements, and plantar pressure map of an intact foot during walking. TAA reduced ankle mobility while increasing movement of the adjacent joints and forefoot plantar pressure. Both implant methods changed force transmission within the midfoot during gait progression.The translational potential of this article Our work is one of the few to report foot segment movements and the internal loading status of implanted ankles during a dynamic locomotion task. These outcomes partially support the conjecture that TTR is a prospective surgical alternative for pathological ankles from a biomechanical perspective. This study paves the way for further clinical investigations and systematic statistics to confirm the effects of TTR on functional joint recovery.

4.
Biology (Basel) ; 11(7)2022 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-36101411

RÉSUMÉ

Sleeping support systems can influence spinal curvature, and the misalignment of the spinal curvature can lead to musculoskeletal problems. Previous sleep studies on craniocervical support focused on pillow variants, but the mattress supporting the pillow has rarely been considered. This study used a cervical pillow and three mattresses of different stiffnesses, namely soft, medium, and hard, with an indentation load deflection of 20, 42, and 120 lbs, respectively. A novel electronic curvature measurement device was adopted to measure the spinal curvature, whereby the intervertebral disc loading was computed using the finite element method. Compared with the medium mattress, the head distance increased by 30.5 ± 15.9 mm, the cervical lordosis distance increased by 26.7 ± 14.9 mm, and intervertebral disc peak loading increased by 49% in the soft mattress environment. Considering that the pillow support may increase when using a soft mattress, a softer or thinner pillow is recommended. The head distance and cervical lordosis distance in the hard mattress environment were close to the medium mattress, but the lumbar lordosis distance reduced by 10.6 ± 6.8 mm. However, no significant increase in intervertebral disc loading was observed, but contact pressure increased significantly, which could cause discomfort and health problems.

5.
Sensors (Basel) ; 21(9)2021 May 06.
Article de Anglais | MEDLINE | ID: mdl-34066398

RÉSUMÉ

Evaluation of potential fatigue for the elderly could minimize their risk of injury and thus encourage them to do more physical exercises. Fatigue-related gait instability was often assessed by the changes of joint kinematics, whilst planar pressure variability and asymmetry parameters may complement and provide better estimation. We hypothesized that fatigue condition (induced by the treadmill brisk-walking task) would lead to instability and could be reflected by the variability and asymmetry of plantar pressure. Fifteen elderly adults participated in the 60-min brisk walking trial on a treadmill without a pause, which could ensure that the fatigue-inducing effect is continuous and participants will not recover halfway. The plantar pressure data were extracted at baseline, the 30th minute, and the 60th minute. The median of contact time, peak pressure, and pressure-time integrals in each plantar region was calculated, in addition to their asymmetry and variability. After 60 min of brisk walking, there were significant increases in peak pressure at the medial and lateral arch regions, and central metatarsal regions, in addition to their impulses (p < 0.05). In addition, the variability of plantar pressure at the medial arch was significantly increased (p < 0.05), but their asymmetry was decreased. On the other hand, the contact time was significantly increased at all plantar regions (p < 0.05). The weakened muscle control and shock absorption upon fatigue could be the reason for the increased peak pressure, impulse, and variability, while the improved symmetry and prolonged plantar contact time could be a compensatory mechanism to restore stability. The outcome of this study can facilitate the development of gait instability or fatigue assessment using wearable in-shoe pressure sensors.


Sujet(s)
Marche à pied , Dispositifs électroniques portables , Adulte , Sujet âgé , Phénomènes biomécaniques , Démarche , Humains , Fatigue musculaire , Chaussures
6.
Sensors (Basel) ; 20(23)2020 Dec 07.
Article de Anglais | MEDLINE | ID: mdl-33297364

RÉSUMÉ

Real-time detection of fatigue in the elderly during physical exercises can help identify the stability and thus falling risks which are commonly achieved by the investigation of kinematic parameters. In this study, we aimed to identify the change in gait variability parameters from inertial measurement units (IMU) during a course of 60 min brisk walking which could lay the foundation for the development of fatigue-detecting wearable sensors. Eighteen elderly people were invited to participate in the brisk walking trials for 60 min with a single IMU attached to the posterior heel region of the dominant side. Nine sets of signals, including the accelerations, angular velocities, and rotation angles of the heel in three anatomical axes, were measured and extracted at the three walking times (baseline, 30th min, and 60th min) of the trial for analysis. Sixteen of eighteen participants reported fatigue after walking, and there were significant differences in the median acceleration (p = 0.001), variability of angular velocity (p = 0.025), and range of angle rotation (p = 0.0011), in the medial-lateral direction. In addition, there were also significant differences in the heel pronation angle (p = 0.005) and variability and energy consumption of the angles in the anterior-posterior axis (p = 0.028, p = 0.028), medial-lateral axis (p = 0.014, p = 0.014), and vertical axis (p = 0.002, p < 0.001). Our study demonstrated that a single IMU on the posterior heel of the dominant side can address the variability of kinematics parameters for elderly performing prolonged brisk walking and could serve as an indicator for walking instability, and thus fatigue.


Sujet(s)
Fatigue , Démarche , Marche à pied , Sujet âgé , Phénomènes biomécaniques , Fatigue/diagnostic , Humains , Études longitudinales , Dispositifs électroniques portables
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE