Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cells ; 12(20)2023 10 23.
Article de Anglais | MEDLINE | ID: mdl-37887353

RÉSUMÉ

Pancreatic cancer is characterized by a poor prognosis, with its five-year survival rate lower than that of any other cancer type. Gemcitabine, a standard treatment for pancreatic cancer, often has poor outcomes for patients as a result of chemoresistance. Therefore, novel therapeutic targets must be identified to overcome gemcitabine resistance. Here, we found that SLC38A5, a glutamine transporter, is more highly overexpressed in gemcitabine-resistant patients than in gemcitabine-sensitive patients. Furthermore, the deletion of SLC38A5 decreased the proliferation and migration of gemcitabine-resistant PDAC cells. We also found that the inhibition of SLC38A5 triggered the ferroptosis signaling pathway via RNA sequencing. Also, silencing SLC38A5 induced mitochondrial dysfunction and reduced glutamine uptake and glutathione (GSH) levels, and downregulated the expressions of GSH-related genes NRF2 and GPX4. The blockade of glutamine uptake negatively modulated the mTOR-SREBP1-SCD1 signaling pathway. Therefore, suppression of SLC38A5 triggers ferroptosis via two pathways that regulate lipid ROS levels. Similarly, we observed that knockdown of SLC38A5 restored gemcitabine sensitivity by hindering tumor growth and metastasis in the orthotopic mouse model. Altogether, our results demonstrate that SLC38A5 could be a novel target to overcome gemcitabine resistance in PDAC therapy.


Sujet(s)
Systèmes de transport d'acides aminés neutres , Ferroptose , Tumeurs du pancréas , Animaux , Souris , Humains , , Désoxycytidine/pharmacologie , Désoxycytidine/usage thérapeutique , Glutamine , Résistance aux médicaments antinéoplasiques , Lignée cellulaire tumorale , Tumeurs du pancréas/traitement médicamenteux , Tumeurs du pancréas/génétique , Tumeurs du pancréas/métabolisme , Tumeurs du pancréas
2.
J Mol Med (Berl) ; 101(11): 1449-1464, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37737908

RÉSUMÉ

Gemcitabine is considered a standard treatment for pancreatic cancer, but developing drug resistance greatly limits the effectiveness of chemotherapy and increases the rate of recurrence. Lysyl oxide-like 2 (LOXL2) is highly expressed in pancreatic cancer and is involved in carcinogenesis and EMT regulation. However, studies on the role of LOXL2 in drug resistance are limited. Here, we investigated the mechanism of LOXL2 induction and the effect of LOXL2 on EMT and CSC in gemcitabine-resistant pancreatic cancer. Glucose metabolism was activated in gemcitabine-resistant pancreatic cancer cells, and NF-κB signaling was regulated accordingly. Activated NF-κB directly induces transcription by binding to the promoters of LOXL2 and ZEB1. The EMT process was significantly inhibited by the coregulation of ZEB1 and LOXL2. In addition, LOXL2 inhibition reduced the expression of cancer stemness markers and stemness by regulating MAPK signaling activity. LOXL2 inhibits tumor growth of gemcitabine-resistant pancreatic cancer cells and increases the sensitivity to gemcitabine in mouse models. KEY MESSAGES: We identified a specific mechanism for inducing LOXL2 overexpression in gemcitabine-resistant pancreatic cancer. Taken together, our results suggest LOXL2 has an important regulatory role in maintaining gemcitabine resistance and may be an effective therapeutic target to treat pancreatic cancer.


Sujet(s)
, Tumeurs du pancréas , Animaux , Souris , Facteur de transcription NF-kappa B/métabolisme , Désoxycytidine/pharmacologie , Désoxycytidine/usage thérapeutique , Tumeurs du pancréas/traitement médicamenteux , Tumeurs du pancréas/génétique , Tumeurs du pancréas/métabolisme , Résistance aux médicaments antinéoplasiques/génétique , Glucose/pharmacologie , Lignée cellulaire tumorale
3.
Int J Mol Sci ; 24(16)2023 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-37629174

RÉSUMÉ

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive form of pancreatic cancer with a poor prognosis and low survival rates. The prognostic and predictive biomarkers of PDAC are still largely unknown. The receptor CD74 was recently identified as a regulator of oncogenic properties in various cancers. However, the precise molecular mechanism of CD74 action in PDAC remains little understood. We investigated the role of CD74 by silencing CD74 in the pancreatic cancer cell line Capan-1. CD74 knockdown led to reductions in cell proliferation, migration, and invasion and increased apoptosis. Moreover, silencing CD74 resulted in the decreased expression and secretion of S100A8 and S100A9. An indirect co-culture of fibroblasts and tumor cells revealed that fibroblasts exposed to conditioned media from CD74 knockdown cells exhibited a reduced expression of inflammatory cytokines, suggesting a role of CD74 in influencing cytokine secretion in the tumor microenvironment. Overall, our study provides valuable insights into the critical role of CD74 in regulating the oncogenic properties of pancreatic cancer cells and its influence on the expression and secretion of S100A8 and S100A9. Taken together, these findings indicate CD74 as a potential diagnostic biomarker and therapeutic target for pancreatic cancer.


Sujet(s)
Carcinome du canal pancréatique , Tumeurs du pancréas , Humains , Microenvironnement tumoral , Calgranuline A/génétique , Calgranuline B/génétique , Tumeurs du pancréas/génétique , Carcinome du canal pancréatique/génétique , Tumeurs du pancréas
4.
Front Pharmacol ; 13: 934746, 2022.
Article de Anglais | MEDLINE | ID: mdl-36091811

RÉSUMÉ

Pancreatic cancer is an aggressive cancer characterized by high mortality and poor prognosis, with a survival rate of less than 5 years in advanced stages. Ivermectin, an antiparasitic drug, exerts antitumor effects in various cancer types. This is the first study to evaluate the anticancer effects of the combination of ivermectin and gemcitabine in pancreatic cancer. We found that the ivermectin-gemcitabine combination treatment suppressed pancreatic cancer more effectively than gemcitabine alone treatment. The ivermectin-gemcitabine combination inhibited cell proliferation via G1 arrest of the cell cycle, as evidenced by the downregulation of cyclin D1 expression and the mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT-3) signaling pathway. Ivermectin-gemcitabine increased cell apoptosis by inducing mitochondrial dysfunction via the overproduction of reactive oxygen species and decreased the mitochondrial membrane potential. This combination treatment also decreased the oxygen consumption rate and inhibited mitophagy, which is important for cancer cell death. Moreover, in vivo experiments confirmed that the ivermectin-gemcitabine group had significantly suppressed tumor growth compared to the gemcitabine alone group. These results indicate that ivermectin exerts synergistic effects with gemcitabine, preventing pancreatic cancer progression, and could be a potential antitumor drug for the treatment of pancreatic cancer.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE