Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Proc Biol Sci ; 291(2014): 20232466, 2024 Jan 10.
Article de Anglais | MEDLINE | ID: mdl-38196363

RÉSUMÉ

Obligately multicellular organisms, where cells can only reproduce as part of the group, have evolved multiple times across the tree of life. Obligate multicellularity has only evolved when clonal groups form by cell division, rather than by cells aggregating, as clonality prevents internal conflict. Yet obligately multicellular organisms still vary greatly in 'multicellular complexity' (the number of cells and cell types): some comprise a few cells and cell types, while others have billions of cells and thousands of types. Here, we test whether variation in multicellular complexity is explained by two conflict-suppressing mechanisms, namely a single-cell bottleneck at the start of development, and a strict separation of germline and somatic cells. Examining the life cycles of 129 lineages of plants, animals, fungi and algae, we show using phylogenetic comparative analyses that an early segregation of the germline stem-cell lineage is key to the evolution of more cell types, driven by a strong correlation in the Metazoa. By contrast, the presence of a strict single-cell bottleneck was not related to either the number of cells or the number of cell types, but was associated with early germline segregation. Our results suggest that segregating the germline earlier in development enabled greater evolutionary innovation, although whether this is a consequence of conflict reduction or other non-conflict effects, such as developmental flexibility, is unclear.


Sujet(s)
Cognition , Cellules souches , Animaux , Phylogenèse , Division cellulaire
2.
Proc Natl Acad Sci U S A ; 119(32): e2120457119, 2022 08 09.
Article de Anglais | MEDLINE | ID: mdl-35862435

RÉSUMÉ

Metazoans function as individual organisms but also as "colonies" of cells whose single-celled ancestors lived and reproduced independently. Insights from evolutionary biology about multicellular group formation help us understand the behavior of cells: why they cooperate, and why cooperation sometimes breaks down. Current explanations for multicellularity focus on two aspects of development which promote cooperation and limit conflict among cells: a single-cell bottleneck, which creates organisms composed of clones, and a separation of somatic and germ cell lineages, which reduces the selective advantage of cheating. However, many obligately multicellular organisms thrive with neither, creating the potential for within-organism conflict. Here, we argue that the prevalence of such organisms throughout the Metazoa requires us to refine our preconceptions of conflict-free multicellularity. Evolutionary theory must incorporate developmental mechanisms across a broad range of organisms-such as unusual reproductive strategies, totipotency, and cell competition-while developmental biology must incorporate evolutionary principles. To facilitate this cross-disciplinary approach, we provide a conceptual overview from evolutionary biology for developmental biologists, using analogous examples in the well-studied social insects.


Sujet(s)
Évolution biologique , Lignage cellulaire , Insectes , Animaux , Clones cellulaires , Biologie du développement , Insectes/croissance et développement , Reproduction
3.
Nat Ecol Evol ; 5(1): 122-134, 2021 01.
Article de Anglais | MEDLINE | ID: mdl-33106603

RÉSUMÉ

During crop domestication, human farmers traded greater productivity for higher crop vulnerability outside specialized cultivation conditions. We found a similar domestication trade-off across the major co-evolutionary transitions in the farming systems of attine ants. First, the fundamental nutritional niches of cultivars narrowed over ~60 million years of naturally selected domestication, and laboratory experiments showed that ant farmers representing subsequent domestication stages strictly regulate protein harvest relative to cultivar fundamental nutritional niches. Second, ants with different farming systems differed in their abilities to harvest the resources that best matched the nutritional needs of their fungal cultivars. This was assessed by quantifying realized nutritional niches from analyses of items collected from the mandibles of laden ant foragers in the field. Third, extensive field collections suggest that among-colony genetic diversity of cultivars in small-scale farms may offer population-wide resilience benefits that species with large-scale farming colonies achieve by more elaborate and demanding practices to cultivate less diverse crops. Our results underscore that naturally selected farming systems have the potential to shed light on nutritional trade-offs that shaped the course of culturally evolved human farming.


Sujet(s)
Fourmis , Agriculture , Animaux , Domestication , Fermes , Champignons , Humains , Phylogenèse , Symbiose
4.
J Evol Biol ; 33(12): 1770-1782, 2020 12.
Article de Anglais | MEDLINE | ID: mdl-33030255

RÉSUMÉ

Genomic imprinting results in parent-of-origin-dependent gene expression biased towards either the maternally or paternally derived allele at the imprinted locus. The kinship theory of genomic imprinting argues that this unusual expression pattern can be a manifestation of intra-genomic conflict between the maternally and paternally derived halves of the genome that arises because they are not equally related to the genomes of social partners. The theory thus predicts that imprinting may evolve wherever there are close interactions among asymmetrically related kin. The social Hymenoptera with permanent caste differentiation are suitable candidates for testing the kinship theory because haplodiploid sex determination creates strong relatedness asymmetries and nursing workers interact closely with kin. However, progress in the search for imprinted genes in the social Hymenoptera has been slow, in part because tests for imprinting rely on reciprocal crosses that are impossible in most species. Here, we develop a method to systematically search for imprinting in haplodiploid social insects without crosses, using instead samples of pooled individuals collected from natural colonies. We tested this protocol using data available for the leaf-cutting ant Acromyrmex echinatior, providing the first genome-wide search for imprinting in any ant. Although we identified several genes as potentially imprinted, none of the four genes tested could be verified as imprinted using digital droplet PCR, highlighting the need for higher quality genomic assemblies that accurately map duplicated genes.


Sujet(s)
Fourmis/génétique , Empreinte génomique , Animaux , Femelle , Gènes d'insecte , Mâle , Modèles génétiques , Analyse de séquence d'ARN
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE