Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Exp Ther Med ; 26(4): 492, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37753301

RÉSUMÉ

Microtubule-associated protein 1 light chain 3 (LC3) is an autophagy-associated gene, which is involved in the progression of a number of human malignancies. Such as Breast Cancer, Liver Cancer, and Lung Cancer. However, the role of LC3 in colorectal cancer (CC) remains to be fully elucidated. Therefore, the prognostic role of LC3 expression in CC was evaluated in the present study, with an emphasis on the clinicopathology and prognosis. Expression of LC3 in CC was examined using PubMed, Cochrane Library, Excerpta Medica Database, China Knowledge Infrastructure and Wanfang Data. Newcastle-Ottawa scale was used to screen the literature quality, and RevMan 5.4 and STATA 14.0 were used for the meta-analysis. A total of 1,689 patients from 10 studies were included in the present meta-analysis. The findings of the present study suggested that increased LC3 expression levels were associated with histological grade [odds ratio (OR)=0.91, 95% confidence interval (CI) (0.47, 1.77), P<0.001] and TNM stage [OR=0.91, 95% CI (0.47, 1.77), P<0.001], but were not associated with sex [OR=1.14, 95% CI (0.90, 1.51)], age [OR=0.89, 95% CI (0.67, 1.20)], tumor size [OR=0.78, 95% CI (0.30, 2.34)], histological grade [OR=0.82, 95% CI (0.43, 1.95)] and lymph node metastasis [OR=2.05, 95% CI (1.19, 3.60)] in CC. In addition, the increased expression of LC3 was revealed to be a prognostic factor for the overall survival of patients with CC. In conclusion, the autophagy-associated protein LC3 may be a prognostic indicator of human CC.

2.
Int J Biol Macromol ; 225: 1505-1516, 2023 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-36435459

RÉSUMÉ

Using cheap and green lignin as a partial substitute for petroleum-based polyols is highly attractive for sustainable development of polyurethane elastomers (LPUes). However, the traditional synthesis process of LPUes inevitably uses toxic solvents that are difficult to remove or carcinogenic. Here, we reported a solvent-free synthesis method to prepare lignin-containing polyurethane elastomers (SF-LPUes) with high strength, high toughness and high elasticity. Most of the hydroxyl groups of lignin reacted with isocyanates to form a strong chemical cross-linking network, while the unreacted ones formed a dynamic hydrogen bond network with polyurethane matrix, contributing to the in-situ formation of lignin nanoparticles to build a nano-micro phase separation structure. Consequently, a dual-crosslinking network structure was formed and endowed SF-LPUes with excellent mechanical properties. Especially, the SF-LPUes prepared from low molecular alkali lignin possessed a tensile strength as high as 38.2 MPa, a maximum elongation at break of 1108 %, and an elastic recovery ratio of up to 98.7 %. Moreover, SF-LPUes showed impressing reprocessing performance and aging resistance. This work provides an industrial application prospect for the synthesis of lignin-containing polyurethane elastomers via a solvent-free synthesis process.


Sujet(s)
Élastomères , Polyuréthanes , Élastomères/composition chimique , Polyuréthanes/composition chimique , Lignine/composition chimique , Alcalis , Solvants
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...