Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 173
Filtrer
1.
Anal Methods ; 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39007341

RÉSUMÉ

Deoxynivalenol (DON) has drawn considerable attention for its obvious pathogenicity and wide use in agro-products, which cause a potential threat to human health. In this work, an electrochemical immunosensor is developed for the highly sensitive and selective detection of DON in wheat flour using AuNPs-BP-MWCNTs-COOH and antibodies. The AuNPs-BP-MWCNTs-COOH nanocomposite was prepared via an in situ reduction reaction and ultrasonic-assisted liquid-phase exfoliation. The nanocomposite exhibits a larger surface area, decent stability, excellent electron transfer capability, good protein binding capability and prominent specificity. The plentiful carboxyl group on the nanocomposite can bind to the amino group of the antibody, and AuNPs have an affinity for the sulfhydryl group of the antibody, which makes it feasible for the nanocomposite to load the antibody. The peak currents are plotted against the logarithm of DON concentration from 0.002 to 80 ng mL-1 with a limit of detection (LOD) of 0.5 pg mL-1. This approach establishes an effective label-free immunosensor platform for the detection of DON with high sensitivity and selectivity in various food and agricultural products.

2.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38928396

RÉSUMÉ

Proteomics offers a robust method for quantifying proteins and elucidating their roles in cellular functions, surpassing the insights provided by transcriptomics. The Clinical Proteomic Tumor Analysis Consortium database, enriched with comprehensive cancer proteomics data including phosphorylation and ubiquitination profiles, alongside transcriptomics data from the Genomic Data Commons, allow for integrative molecular studies of cancer. The ProteoCancer Analysis Suite (PCAS), our newly developed R package and Shinyapp, leverages these resources to facilitate in-depth analyses of proteomics, phosphoproteomics, and transcriptomics, enhancing our understanding of the tumor microenvironment through features like immune infiltration and drug sensitivity analysis. This tool aids in identifying critical signaling pathways and therapeutic targets, particularly through its detailed phosphoproteomic analysis. To demonstrate the functionality of the PCAS, we conducted an analysis of GAPDH across multiple cancer types, revealing a significant upregulation of protein levels, which is consistent with its important biological and clinical significance in tumors, as indicated in our prior research. Further experiments were used to validate the findings performed using the tool. In conclusion, the PCAS is a powerful and valuable tool for conducting comprehensive proteomic analyses, significantly enhancing our ability to uncover oncogenic mechanisms and identify potential therapeutic targets in cancer research.


Sujet(s)
Tumeurs , Protéomique , Humains , Protéomique/méthodes , Tumeurs/métabolisme , Tumeurs/génétique , Microenvironnement tumoral/génétique , Logiciel , Biologie informatique/méthodes , Protéome/métabolisme
3.
Micron ; 185: 103679, 2024 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-38924906

RÉSUMÉ

A heterostructured crystalline bilayer specimen is known to produce moiré fringes (MFs) in the conventional transmission electron microscopy (TEM). However, the understanding of how these patterns form in scanning transmission electron microscopy (STEM) remains limited. Here, we extended the double-scattering model to establish the imaging theory of MFs in STEM for a bilayer sample and applied this theory to successfully explain both experimental and simulated STEM images of a perovskite PbZrO3/SrTiO3 system. Our findings demonstrated that the wave vectors of electrons exiting from Layer-1 and their relative positions with the atomic columns of Layer-2 should be taken into account. The atomic column misalignment leads to a faster reduction in the intensity of the secondary scattering beam compared to the single scattering beam as the scattering angle increases. Consequently, the intensity distribution of MFs in the bright field (BF)-STEM can be still described as the product of two single atomic images. However, in high angle annular dark field (HAADF)-STEM, it is approximately described as the superposition of the two images. Our work not only fills a knowledge gap of MFs in incoherent imaging, but also emphasizes the importance of the coherent scattering restricted by the real space when analyzing the HAADF-STEM imaging.

4.
Insights Imaging ; 15(1): 156, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38900336

RÉSUMÉ

OBJECTIVE: To assess renal interstitial fibrosis (IF) using diffusion MRI approaches, and explore whether corticomedullary difference (CMD) of diffusion parameters, combination among MRI parameters, or combination with estimated glomerular filtration rate (eGFR) benefit IF evaluation. METHODS: Forty-two patients with chronic kidney disease were included, undergoing MRI examinations. MRI parameters from apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), and diffusion-relaxation correlated spectrum imaging (DR-CSI) were obtained both for renal cortex and medulla. CMD of these parameters was calculated. Pathological IF scores (1-3) were obtained by biopsy. Patients were divided into mild (IF = 1, n = 23) and moderate-severe fibrosis (IF = 2-3, n = 19) groups. Group comparisons for MRI parameters were performed. Diagnostic performances were assessed by the receiver operator's curve analysis for discriminating mild from moderate-severe IF patients. RESULTS: Significant inter-group differences existed for cortical ADC, IVIM-D, IVIM-f, DKI-MD, DR-CSI VB, and DR-CSI VC. Significant inter-group differences existed in ΔADC, ΔMD, ΔVB, ΔVC, ΔQB, and ΔQC. Among the cortical MRI parameters, VB displayed the highest AUC = 0.849, while ADC, f, and MD also showed AUC > 0.8. After combining cortical value and CMD, the diagnostic performances of the MRI parameters were slightly improved except for IVIM-D. Combining VB with f brings the best performance (AUC = 0.903) among MRI bi-variant models. A combination of cortical VB, ΔADC, and eGFR brought obvious improvement in diagnostic performance (AUC 0.963 vs 0.879, specificity 0.826 vs 0.896, and sensitivity 1.000 vs 0.842) than eGFR alone. CONCLUSION: Our study shows promising results for the assessment of renal IF using diffusion MRI approaches. CRITICAL RELEVANCE STATEMENT: Our study explores the non-invasive assessment of renal IF, an independent and effective predictor of renal outcomes, by comparing and combining diffusion MRI approaches including compartmental, non-compartmental, and model-free approaches. KEY POINTS: Significant difference exists for diffusion parameters between mild and moderate-severe IF. Generally, cortical parameters show better performance than corresponding CMD. Bi-variant model lifts the diagnostic performance for assessing IF.

5.
CNS Neurosci Ther ; 30(6): e14802, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38887185

RÉSUMÉ

BACKGROUND: Glioblastoma multiforme (GBM) is the most aggressive primary brain malignancy. Novel therapeutic modalities like tumor electric field therapy (TEFT) have shown promise, but underlying mechanisms remain unclear. The extracellular matrix (ECM) is implicated in GBM progression, warranting investigation into TEFT-ECM interplay. METHODS: T98G cells were treated with TEFT (200 kHz, 2.2 V/m) for 72 h. Collagen type VI alpha 1 (COL6A1) was identified as hub gene via comprehensive bioinformatic analysis based on RNA sequencing (RNA-seq) and public glioma datasets. TEFT intervention models were established using T98G and Ln229 cell lines. Pre-TEFT and post-TEFT GBM tissues were collected for further validation. Focal adhesion pathway activity was assessed by western blot. Functional partners of COL6A1 were identified and validated by co-localization and survival analysis. RESULTS: TEFT altered ECM-related gene expression in T98G cells, including the hub gene COL6A1. COL6A1 was upregulated in GBM and associated with poor prognosis. Muti-database GBM single-cell analysis revealed high-COL6A1 expression predominantly in malignant cell subpopulations. Differential expression and functional enrichment analyses suggested COL6A1 might be involved in ECM organization and focal adhesion. Western blot (WB), immunofluorescence (IF), and co-immunoprecipitation (Co-IP) experiments revealed that TEFT significantly inhibited expression of COL6A1, hindering its interaction with ITGA5, consequently suppressing the FAK/Paxillin/AKT pathway activity. These results suggested that TEFT might exert its antitumor effects by downregulating COL6A1 and thereby inhibiting the activity of the focal adhesion pathway. CONCLUSION: TEFT could remodel the ECM of GBM cells by downregulating COL6A1 expression and inhibiting focal adhesion pathway. COL6A1 could interact with ITGA5 and activate the focal adhesion pathway, suggesting that it might be a potential therapeutic target mediating the antitumor effects of TEFT.


Sujet(s)
Tumeurs du cerveau , Collagène de type VI , Électrothérapie , Glioblastome , Collagène de type VI/génétique , Collagène de type VI/métabolisme , Humains , Glioblastome/génétique , Glioblastome/thérapie , Glioblastome/métabolisme , Tumeurs du cerveau/génétique , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/thérapie , Tumeurs du cerveau/anatomopathologie , Électrothérapie/méthodes , Lignée cellulaire tumorale , Animaux , Souris nude , Souris
6.
Mycorrhiza ; 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38836935

RÉSUMÉ

Broussonetia papyrifera is widely found in cadmium (Cd) contaminated areas, with an inherent enhanced flavonoids metabolism and inhibited lignin biosynthesis, colonized by lots of symbiotic fungi, such as arbuscular mycorrhizal fungi (AMF). However, the physiological and molecular mechanisms by which Rhizophagus irregularis, an AM fungus, regulates flavonoids and lignin in B. papyrifera under Cd stress remain unclear. Here, a pot experiment of B. papyrifera inoculated and non-inoculated with R. irregularis under Cd stress was carried out. We determined flavonoids and lignin concentrations in B. papyrifera roots by LC-MS and GC-MS, respectively, and measured the transcriptional levels of flavonoids- or lignin-related genes in B. papyrifera roots, aiming to ascertain the key components of flavonoids or lignin, and key genes regulated by R. irregularis in response to Cd stress. Without R. irregularis, the concentrations of eriodictyol, quercetin and myricetin were significantly increased under Cd stress. The concentrations of eriodictyol and genistein were significantly increased by R. irregularis, while the concentration of rutin was significantly decreased. Total lignin and lignin monomer had no alteration under Cd stress or with R. irregularis inoculation. As for flavonoids- or lignin-related genes, 26 genes were co-regulated by Cd stress and R. irregularis. Among these genes, BpC4H2, BpCHS8 and BpCHI5 were strongly positively associated with eriodictyol, indicating that these three genes participate in eriodictyol biosynthesis and were involved in R. irregularis assisting B. papyrifera to cope with Cd stress. This lays a foundation for further research revealing molecular mechanisms by which R. irregularis regulates flavonoids synthesis to enhance tolerance of B. papyrifera to Cd stress.

7.
J Am Chem Soc ; 146(20): 13797-13804, 2024 May 22.
Article de Anglais | MEDLINE | ID: mdl-38722223

RÉSUMÉ

Hydrides are promising candidates for achieving room-temperature superconductivity, but a formidable challenge remains in reducing the stabilization pressure below a megabar. In this study, we successfully synthesized a ternary lanthanum borohydride by introducing the nonmetallic element B into the La-H system, forming robust B-H covalent bonds that lower the pressure required to stabilize the superconducting phase. Electrical transport measurements confirm the presence of superconductivity with a critical temperature (Tc) of up to 106 K at 90 GPa, as evidenced by zero resistance and Tc shift under an external magnetic field. X-ray diffraction and transport measurements identify the superconducting compound as LaB2H8, a nonclathrate hydride, whose crystal structure remains stable at pressures as low as ∼ half megabar (59 GPa). Stabilizing superconductive stoichiometric LaB2H8 in a submegabar pressure regime marks a substantial advancement in the quest for high-Tc superconductivity in polynary hydrides, bringing us closer to the ambient pressure conditions.

8.
Exp Cell Res ; 439(1): 114088, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38744409

RÉSUMÉ

Neuroinflammation mediated by microglia plays an important role in the etiology of Parkinson's disease (PD). Rho family GTPase 3 (RND3) exerts anti-inflammatory effects and may act as a potential new inducer of neuroprotective phenotypes in microglia. However, whether RND3 can be used to regulate microglia activation or reduce neuroinflammation in PD remains elusive. The study investigated the microglia modulating effects and potential anti-inflammatory effects of RND3 in vivo and in vitro, using animal models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD and cell models of BV-2 cells stimulated by LPS plus IFN-γ with or without RND3-overexpression. The results showed that RND3 was highly expressed in the MPTP-induced PD mouse model and BV-2 cells treated with LPS and IFN-γ. In vivo experiments confirmed that RND3 overexpression could modulate microglia phenotype and ameliorate MPTP-induced neuroinflammation through inhibiting activation of the NLRP3 inflammasome in substantia nigra pars compacta (SNpc). In vitro study showed that RND3 overexpression could attenuate the production of pro-inflammatory factors in BV2 cells stimulated by LPS and IFN-γ. Mechanistically, RND3 reduced the activation of the NLRP3 inflammasome upon LPS and IFN-γ stimulation. Taken together, these findings suggest that RND3 modulates microglial polarization and alleviates neuroinflammation in Parkinson's disease by suppressing NLRP3 inflammasome activation.


Sujet(s)
Inflammasomes , Souris de lignée C57BL , Microglie , Protéine-3 de la famille des NLR contenant un domaine pyrine , Maladie de Parkinson , Protéines G rho , Animaux , Microglie/métabolisme , Microglie/anatomopathologie , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Protéine-3 de la famille des NLR contenant un domaine pyrine/génétique , Souris , Inflammasomes/métabolisme , Mâle , Protéines G rho/métabolisme , Protéines G rho/génétique , Maladie de Parkinson/métabolisme , Maladie de Parkinson/anatomopathologie , Maladie de Parkinson/génétique , Maladies neuro-inflammatoires/métabolisme , Maladies neuro-inflammatoires/anatomopathologie , Lipopolysaccharides/pharmacologie , Modèles animaux de maladie humaine , Polarité de la cellule , 1-Méthyl-4-phényl-1,2,3,6-tétrahydropyridine , Inflammation/métabolisme , Inflammation/anatomopathologie , Inflammation/génétique , Interféron gamma/métabolisme
9.
Plant Physiol Biochem ; 210: 108648, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38653094

RÉSUMÉ

This study aims to investigate effects of arbuscular mycorrhizal fungi (AMF) inoculation on nitrogen (N) uptake and assimilation in Populus cathayana under drought stress (DS). Herein, we measured photosynthetic performance, antioxidant enzyme system, N level and N assimilation enzymes, proteins content and distribution, transcripts of genes associated with N uptake or transport in P. cathayana with AMF (AM) or without AMF (NM) under soil water limitation and adequate irrigation. Compared with NM-DS P. cathayana, the growth, gas exchange properties, antioxidant enzyme activities, total N content and the proportion of water-soluble and membrane-bound proteins in AM-DS P. cathayana were increased. Meanwhile, nitrate reductase (NR) activity, NO3- and NO2- concentrations in AM-DS P. cathayana were reduced, while NH4+ concentration, glutamine synthetase (GS) and glutamate synthetase (GOGAT) activities were elevated, indicating that AM symbiosis reduces NO3- assimilation while promoting NH4+ assimilation. Furthermore, the transcriptional levels of NH4+ transporter genes (PcAMT1-4 and PcAMT2-1) and NO3- transporter genes (PcNRT2-1 and PcNRT3-1) in AM-DS P. cathayana roots were significantly down-regulated, as well as NH4+ transporter genes (PcAMT1-6 and PcAMT4-3) in leaves. In AM P. cathayana roots, DS significantly up-regulated the transcriptional levels of RiCPSI and RiURE, the key N transport regulatory genes in AMF compared with adequate irrigation. These results indicated that AM N transport pathway play an essential role on N uptake and utilization in AM P. cathayana to cope with DS. Therefore, this research offers a novel perspective on how AM symbiosis enhances plant resilience to drought at aspect of N acquisition and assimilation.


Sujet(s)
Sécheresses , Mycorhizes , Azote , Populus , Symbiose , Populus/microbiologie , Populus/métabolisme , Populus/génétique , Populus/physiologie , Mycorhizes/physiologie , Mycorhizes/métabolisme , Azote/métabolisme , Symbiose/physiologie , Régulation de l'expression des gènes végétaux , Protéines végétales/métabolisme , Protéines végétales/génétique , Racines de plante/microbiologie , Racines de plante/métabolisme , Photosynthèse/physiologie , Résistance à la sécheresse
10.
Sci Rep ; 14(1): 7740, 2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38565888

RÉSUMÉ

Analyzing the important nodes of complex systems by complex network theory can effectively solve the scientific bottlenecks in various aspects of these systems, and how to excavate important nodes has become a hot topic in complex network research. This paper proposes an algorithm for excavating important nodes based on the heat conduction model (HCM), which measures the importance of nodes by their output capacity. The number and importance of a node's neighbors are first used to determine its own capacity, its output capacity is then calculated based on the HCM while considering the network density, distance between nodes, and degree density of other nodes. The importance of the node is finally measured by the magnitude of the output capacity. The similarity experiments of node importance, sorting and comparison experiments of important nodes, and capability experiments of multi-node infection are conducted in nine real networks using the Susceptible-Infected-Removed model as the evaluation criteria. Further, capability experiments of multi-node infection are conducted using the Independent cascade model. The effectiveness of the HCM is demonstrated through a comparison with eight other algorithms for excavating important nodes.

11.
Radiol Med ; 129(6): 834-844, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38662246

RÉSUMÉ

PURPOSE: To study the capability of diffusion-relaxation correlation spectroscopic imaging (DR-CSI) on subtype classification and grade differentiation for small renal cell carcinoma (RCC). Histogram analysis for apparent diffusion coefficient (ADC) was studied for comparison. MATERIALS AND METHODS: A total of 61 patients with small RCC (< 4 cm) were included in the retrospective study. MRI data were reviewed, including a multi-b (0-1500 s/mm2) multi-TE (51-200 ms) diffusion weighted imaging (DWI) sequence. Region of interest (ROI) was delineated manually on DWI to include solid tumor. For each patient, a D-T2 spectrum was fitted and segmented into 5 compartments, and the volume fractions VA, VB, VC, VD, VE were obtained. ADC mapping was calculated, and histogram parameters ADC 90th, 10th, median, standard deviation, skewness and kurtosis were obtained. All MRI metrices were compared between clear cell RCC (ccRCC) and non-ccRCC group, and between high-grade and low-grade group. Receiver operator curve analysis was used to assess the corresponding diagnostic performance. RESULTS: Significantly higher ADC 90th, ADC 10th and ADC median, and significantly lower DR-CSI VB was found for ccRCC compared to non-ccRCC. Significantly lower ADC 90th, ADC median and significantly higher VB was found for high-grade RCC compared to low-grade. For identifying ccRCC from non-ccRCC, VB showed the highest area under curve (AUC, 0.861) and specificity (0.882). For differentiating high- from low-grade, ADC 90th showed the highest AUC (0.726) and specificity (0.786), while VB also displayed a moderate AUC (0.715). CONCLUSION: DR-CSI may offer improved accuracy in subtype identification for small RCC, while do not show better performance for small RCC grading compared to ADC histogram.


Sujet(s)
Néphrocarcinome , Imagerie par résonance magnétique de diffusion , Tumeurs du rein , Humains , Néphrocarcinome/imagerie diagnostique , Néphrocarcinome/anatomopathologie , Tumeurs du rein/imagerie diagnostique , Mâle , Femelle , Imagerie par résonance magnétique de diffusion/méthodes , Études rétrospectives , Adulte d'âge moyen , Sujet âgé , Adulte , Grading des tumeurs , Sujet âgé de 80 ans ou plus , Sensibilité et spécificité
12.
Cell Signal ; 118: 111139, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38479556

RÉSUMÉ

Parkinson's disease (PD) is a gradually debilitating neurodegenerative syndrome. Here, we analyzed GSE7621 chip data obtained from the Gene Expression Omnibus (GEO) database to explore the pathogenesis of PD. Early B Cell Factor 3 (EBF3), a member of the highly evolutionarily conserved EBF-transcription factor family, is involved in neuronal development. EBF3 expression is low in the substantia nigra of patients with PD. However, whether EBF3 is implicated in dopaminergic neuron death during PD has not yet been investigated. Therefore, we aimed to reveal the potential anti-apoptotic effect and molecular mechanism of EBF3 in PD. We established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model in vivo and a 1-methyl-4-phenylpyridine (MPP+)-induced SH-SY5Y cell model in vitro. EBF3 was downregulated in the substantia nigra of PD mice and SH-SY5Y cells treated with MPP+, and the m6A methylation modification level was low. Fat mass and obesity-associated protein (FTO) siRNA upregulated m6A methylation modification of EBF3 and extended the EBF3 mRNA half-life. Functionally, as demonstrated by the results of the open-field test, pole test and gait analysis, EBF3 overexpression ameliorated MPTP-induced behavioral disorder. Further, EBF3 overexpression suppressed neuronal apoptosis in vivo, as evidenced by decreased TUNEL+ cells, and the increased activation of caspase-3 and caspase-9. Similar results were obtained in vitro, as reflected by increased cell viability, decreased LDH activity and restored mitochondrial function, collectively protecting SH-SY5Y cells from MPP+-induced apoptosis. Mechanistically, the results of luciferase reporter, ch-IP and DNA pull-down assays confirmed that, as a transcription factor, EBF3 bound to the promoter of CNTNAP4 (a protein associated with neuronal differentiation) and directly regulated CNTNAP4 transcription. Strikingly, CNTNAP4 knockdown markedly abolished the effect of EBF3 on cell apoptosis, thus aggravating PD. In conclusion, the low level of m6A methylation modification may contribute to the low expression of EBF3 during PD. Additionally, EBF3 attenuates PD by activating CNTNAP4 transcription, suggesting that EBF3 may be a novel therapeutic target in PD.


Sujet(s)
Neuroblastome , Maladie de Parkinson , Animaux , Humains , Souris , Alpha-ketoglutarate-dependent dioxygenase FTO , Apoptose , Lignée cellulaire tumorale , Contactines/métabolisme , Neurones dopaminergiques/métabolisme , Souris de lignée C57BL , Neuroblastome/métabolisme , Maladie de Parkinson/métabolisme , Facteurs de transcription/métabolisme
13.
New Phytol ; 242(5): 2207-2222, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38481316

RÉSUMÉ

In terrestrial ecosystems, most plant species can form beneficial associations with arbuscular mycorrhizal (AM) fungi. Arbuscular mycorrhizal fungi benefit plant nutrient acquisition and enhance plant tolerance to drought. The high osmolarity glycerol 1 mitogen-activated protein kinase (HOG1-MAPK) cascade genes have been characterized in Rhizophagus irregularis. However, the upstream receptor of the HOG1-MAPK cascade remains to be investigated. We identify the receptor kinase RiSho1 from R. irregularis, containing four transmembrane domains and one Src homology 3 (SH3) domain, corresponding to the homologue of Saccharomyces cerevisiae. Higher expression levels of RiSho1 were detected during the in planta phase in response to drought. RiSho1 protein was localized in the plasma membrane of yeast, and interacted with the HOG1-MAPK module RiPbs2 directly by protein-protein interaction. RiSho1 complemented the growth defect of the yeast mutant ∆sho1 under sorbitol conditions. Knock-down of RiSho1 led to the decreased expression of downstream HOG1-MAPK cascade (RiSte11, RiPbs2, RiHog1) and drought-resistant genes (RiAQPs, RiTPSs, RiNTH1 and Ri14-3-3), hampered arbuscule development and decreased plants antioxidation ability under drought stress. Our study reveals the role of RiSho1 in regulating arbuscule development and drought-resistant genes via the HOG1-MAPK cascade. These findings provide new perspectives on the mechanisms by which AM fungi respond to drought.


Sujet(s)
Sécheresses , Mycorhizes , Symbiose , Mycorhizes/physiologie , Symbiose/génétique , Symbiose/physiologie , Adaptation physiologique/génétique , Protéines fongiques/métabolisme , Protéines fongiques/génétique , Saccharomyces cerevisiae/génétique , Régulation de l'expression des gènes végétaux , Medicago truncatula/microbiologie , Medicago truncatula/génétique , Medicago truncatula/enzymologie , Résistance à la sécheresse , Champignons
14.
ACS Nano ; 18(11): 7989-8001, 2024 Mar 19.
Article de Anglais | MEDLINE | ID: mdl-38438318

RÉSUMÉ

A substantial ferroelectric polarization is the key for designing high-performance ferroelectric nonvolatile memories. As a promising candidate system, the BaTiO3/La0.67Sr0.33MnO3 (BTO/LSMO) ferroelectric/ferromagnetic heterostructure has attracted a lot of attention thanks to the merits of high Curie temperature, large spin polarization, and low ferroelectric coercivity. Nevertheless, the BTO/LSMO heterostructure suffers from a moderate FE polarization, primarily due to the quick film-thickness-driven strain relaxation. In response to this challenge, we propose an approach for enhancing the FE properties of BTO films by using a Sr3Al2O6 (SAO) buffering layer to mitigate the interfacial strain relaxation. The continuously tunable strain allows us to illustrate the linear dependence of polarization on epitaxial strain with a large strain-sensitive coefficient of ∼27 µC/cm2 per percent strain. This results in a giant polarization of ∼80 µC/cm2 on the BTO/LSMO interface. Leveraging this large polarization, we achieved a giant tunneling electroresistance (TER) of ∼105 in SAO-buffered Pt/BTO/LSMO ferroelectric tunnel junctions (FTJs). Our research uncovers the fundamental interplay between strain, polarization magnitude, and device performance, such as on/off ratio, thereby advancing the potential of FTJs for next-generation information storage applications.

16.
Int J Radiat Biol ; 100(6): 834-848, 2024.
Article de Anglais | MEDLINE | ID: mdl-38506660

RÉSUMÉ

PURPOSE: Transforming growth factor (TGF-ß) plays a dual role in tumor progression as well as a pivotal role in radiation response. TGF-ß-related epigenetic regulations, including DNA methylation, histone modifications (including methylation, acetylation, phosphorylation, ubiquitination), chromatin remodeling and non-coding RNA regulation, have been found to affect the occurrence and development of tumors as well as their radiation response in multiple dimensions. Due to the significance of radiotherapy in tumor treatment and the essential roles of TGF-ß signaling in radiation response, it is important to better understand the role of epigenetic regulation mechanisms mediated by TGF-ß signaling pathways in radiation-induced targeted and non-targeted effects. CONCLUSIONS: By revealing the epigenetic mechanism related to TGF-ß-mediated radiation response, summarizing the existing relevant adjuvant strategies for radiotherapy based on TGF-ß signaling, and discovering potential therapeutic targets, we hope to provide a new perspective for improving clinical treatment.


Sujet(s)
Épigenèse génétique , Transduction du signal , Facteur de croissance transformant bêta , Facteur de croissance transformant bêta/métabolisme , Humains , Épigenèse génétique/effets des radiations , Transduction du signal/effets des radiations , Animaux , Tumeurs/radiothérapie , Tumeurs/génétique , Tumeurs/métabolisme , Méthylation de l'ADN/effets des radiations , Radiotolérance
17.
Sci Total Environ ; 920: 170667, 2024 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-38331289

RÉSUMÉ

The remediation of heavy metals/metalloids (HMs) co-contaminated soil by solid wastes-based stabilizers (SWBS) has received major concern recently. Based on the literature reported in the latest years (2010-2023), this review systematically summarizes the different types of solid wastes (e.g., steel slag, coal fly ash, red mud, and sewage sludge, etc.) employed to stabilize HMs contaminated soil, and presents results from laboratory and field experiments. Firstly, the suitable solid wastes for soil remediation are reviewed, and the pros and cons are presented. Thereafter, the technical feasibility and economic benefit are evaluated for field application. Moreover, evaluation methods for remediation of different types of HMs-contaminated soil and the effects of SWBS on soil properties are summarized. Finally, due to the large specific surface, porous structure, and high reactivity, the SWBS can effectively stabilize HMs via adsorption, complexation, co/precipitation, ion exchange, electrostatic interaction, redox, and hydration process. Importantly, the environmental implications and long-term effectiveness associated with the utilization of solid wastes are highlighted, which are challenges for practical implementation of soil stabilization using SWBS, because the aging of soil/solid wastes has not been thoroughly investigated. Future attention should focus on modifying the SWBS and establishing an integrated long-term stability evaluation method.

18.
Nature ; 626(8000): 779-784, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38383626

RÉSUMÉ

Moiré superlattices formed by twisted stacking in van der Waals materials have emerged as a new platform for exploring the physics of strongly correlated materials and other emergent phenomena1-5. However, there remains a lack of research on the mechanical properties of twisted-layer van der Waals materials, owing to a lack of suitable strategies for making three-dimensional bulk materials. Here we report the successful synthesis of a polycrystalline boron nitride bulk ceramic with high room-temperature deformability and strength. This ceramic, synthesized from an onion-like boron nitride nanoprecursor with conventional spark plasma sintering and hot-pressing sintering, consists of interlocked laminated nanoplates in which parallel laminae are stacked with varying twist angles. The compressive strain of this bulk ceramic can reach 14% before fracture, about one order of magnitude higher compared with traditional ceramics (less than 1% in general), whereas the compressive strength is about six times that of ordinary hexagonal boron nitride layered ceramics. The exceptional mechanical properties are due to a combination of the elevated intrinsic deformability of the twisted layering in the nanoplates and the three-dimensional interlocked architecture that restricts deformation from propagating across individual nanoplates. The advent of this twisted-layer boron nitride bulk ceramic opens a gate to the fabrication of highly deformable bulk ceramics.

19.
Br J Radiol ; 97(1153): 135-141, 2024 Jan 23.
Article de Anglais | MEDLINE | ID: mdl-38263829

RÉSUMÉ

OBJECTIVES: To differentiate high-grade from low-grade clear cell renal cell carcinoma (ccRCC) using diffusion-relaxation correlation spectroscopic imaging (DR-CSI) spectra in an equal separating analysis. METHODS: Eighty patients with 86 pathologically confirmed ccRCCs who underwent DR-CSI were enrolled. Two radiologists delineated the region of interest. The spectrum was derived based on DR-CSI and was further segmented into multiple equal subregions from 2*2 to 9*9. The agreement between the 2 radiologists was assessed by the intraclass correlation coefficient (ICC). Logistic regression was used to establish the regression model for differentiation, and 5-fold cross-validation was used to evaluate its accuracy. McNemar's test was used to compare the diagnostic performance between equipartition models and the traditional parameters, including the apparent diffusion coefficient (ADC) and T2 value. RESULTS: The inter-reader agreement decreased as the divisions in the equipartition model increased (overall ICC ranged from 0.859 to 0.920). The accuracy increased from the 2*2 to 9*9 equipartition model (0.68 for 2*2, 0.69 for 3*3 and 4*4, 0.70 for 5*5, 0.71 for 6*6, 0.78 for 7*7, and 0.75 for 8*8 and 9*9). The equipartition models with divisions >7*7 were significantly better than ADC and T2 (vs ADC: P = .002-.008; vs T2: P = .001-.004). CONCLUSIONS: The equipartition method has the potential to analyse the DR-CSI spectrum and discriminate between low-grade and high-grade ccRCC. ADVANCES IN KNOWLEDGE: The evaluation of DR-CSI relies on prior knowledge, and how to assess the spectrum derived from DR-CSI without prior knowledge has not been well studied.


Sujet(s)
Néphrocarcinome , Tumeurs du rein , Humains , Analyse spectrale , Imagerie diagnostique , Différenciation cellulaire
20.
Nature ; 626(7997): 79-85, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38172640

RÉSUMÉ

Grain boundaries (GBs), with their diversity in both structure and structural transitions, play an essential role in tailoring the properties of polycrystalline materials1-5. As a unique GB subset, {112} incoherent twin boundaries (ITBs) are ubiquitous in nanotwinned, face-centred cubic materials6-9. Although multiple ITB configurations and transitions have been reported7,10, their transition mechanisms and impacts on mechanical properties remain largely unexplored, especially in regard to covalent materials. Here we report atomic observations of six ITB configurations and structural transitions in diamond at room temperature, showing a dislocation-mediated mechanism different from metallic systems11,12. The dominant ITBs are asymmetric and less mobile, contributing strongly to continuous hardening in nanotwinned diamond13. The potential driving forces of ITB activities are discussed. Our findings shed new light on GB behaviour in diamond and covalent materials, pointing to a new strategy for development of high-performance, nanotwinned materials.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...