Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Article de Anglais | MEDLINE | ID: mdl-38518117

RÉSUMÉ

Drosophila has been used as an animal model to study pathogenic mechanism of neurological disorders. Thymidylate kinase (TMPK) is an essential enzyme in dTTP synthesis catalyzing the phosphorylation of dTMP to dTDP. Loss of function mutations in the DTYMK gene, coding for TMPK, cause severe microcephaly in human patients. In this study, Drosophila melanogaster TMPK (DmTMPK) was cloned, expressed, purified and characterized. Unlike human TMPK, DmTMPK phosphorylated not only dTMP and dUMP but also dGMP and dIMP although with low efficiency. ATP and dATP are the most efficient phosphate donor but at higher concentration (>1 mM) ATP inhibited DmTMPK activity. Sequence and structural model analysis explain why DmTMPK could phosphorylate purine nucleoside monophosphates. This study has laid a solid foundation for future study of TMPK function in Drosophila.

2.
Nucleosides Nucleotides Nucleic Acids ; 41(12): 1305-1317, 2022.
Article de Anglais | MEDLINE | ID: mdl-35345982

RÉSUMÉ

Metal ions play an important role in many metabolic processes in all living organisms. At low concentrations, heavy metals such as Fe2+, Cu2+ and Zn2+ are essential cofactors for many enzymes. However, at high concentrations they are toxic. Mesorhizobium species belong to the class α-proteobacteria and have high tolerance to soil acidity, salinity, temperature extremes, and metallicolous conditions. To identify factors responsible for this tolerance we have studied the effects of metal ions on Mesorhizobium delmotii thymidylate kinase (MdTMPK), an essential enzyme in the synthesis of dTTP, thus being vital for cell growth. We show that Mg2+ and Mn2+ are the divalent metal ions required for catalysis and that Mn2+ gives the highest catalytic efficiency. MdTMPK activity in the presence of Mg2+ was strongly inhibited by the co-presence of Zn2+, Ni2+ and Co2+. However, the addition of Cs+ caused >2-fold enhanced MdTMPK activity. For TMPK from Bacilus anthracis and humans, the effects of Mg2+ and Mn2+ were similar, whereas the effects of other divalent metal ions were different, and no stimulatory effect of Cs+ was observed. Together, our results demonstrate that MdTMPK and BaTMPK function well in the presence of high concentrations of heavy metal ions, introducing a potential contribution of these enzymes to the heavy metal tolerance of Mesorhizobium delmotii and Bacillus anthracis.


Sujet(s)
Mesorhizobium , Métaux lourds , Humains , Mesorhizobium/métabolisme , Métaux lourds/toxicité , Métaux lourds/métabolisme , Nucleoside phosphate kinase
3.
Article de Anglais | MEDLINE | ID: mdl-34994281

RÉSUMÉ

Thymidylate kinase (TMPK) phosphorylates deoxythymidine monophosphate (dTMP) and plays an important role in genome stability. Deficiency in TMPK activity due to genetic alterations of DTYMK, i.e., the gene coding for TMPK, causes severe microcephaly in humans. However, no defects were observed in other tissues, suggesting the existence of a compensatory enzyme for dTTP synthesis. In search for this compensatory enzyme we analyzed 6 isoforms of TMPK mRNA deposited in the GenBank. Of these, only isoform 1 has been characterized and represents the known human TMPK. Our results reveal that isoform 2, 3, 4 and 5 lack essential structural elements for substrate binding and, thus, they are considered as nonfunctional isoforms. Isoform 6, however, has intact catalytic centers, i.e., dTMP-binding, DRX motif, ATP-binding p-loop and lid region, which are the key structural elements of an active TMPK, suggesting that isoform 6 may function as TMPK. When isoform 6 was expressed and purified, it showed only minimal activity (<0.1%) as compared with isoform 1. A putative isoform 6 was detected in a cancer cell line, in addition to the dominant isoform 1. However, because of its low activity, isoform 6 is unlikely be able to compensate for the loss of TMPK activity caused by deletions and/or point mutations of the DTYMK gene. Thereby, future studies to identify and characterize the compensatory TMPK enzyme found in patients with DTYMK mutations may contribute to the understanding of dTTP synthesis and of the pathophysiological role of DTYMK mutations in neurodegenerative disorders.


Sujet(s)
Nucleoside phosphate kinase , Catalyse , Humains , Nucleoside phosphate kinase/composition chimique , Phosphorylation , Isoformes de protéines/génétique , Isoformes de protéines/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE