Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 25
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Proc Natl Acad Sci U S A ; 119(29): e2202464119, 2022 07 19.
Article de Anglais | MEDLINE | ID: mdl-35858322

RÉSUMÉ

RtcB is involved in transfer RNA (tRNA) splicing in archaeal and eukaryotic organisms. However, most RtcBs are found in bacteria, whose tRNAs have no introns. Because tRNAs are the substrates of archaeal and eukaryotic RtcB, it is assumed that bacterial RtcBs are for repair of damaged tRNAs. Here, we show that a subset of bacterial RtcB, denoted RtcB2 herein, specifically repair ribosomal damage in the decoding center. To access the damage site for repair, however, the damaged 70S ribosome needs to be dismantled first, and this is accomplished by bacterial PrfH. Peptide-release assays revealed that PrfH is only active with the damaged 70S ribosome but not with the intact one. A 2.55-Å cryo-electron microscopy structure of PrfH in complex with the damaged 70S ribosome provides molecular insight into PrfH discriminating between the damaged and the intact ribosomes via specific recognition of the cleaved 3'-terminal nucleotide. RNA repair assays demonstrated that RtcB2 efficiently repairs the damaged 30S ribosomal subunit but not the damaged tRNAs. Cell-based assays showed that the RtcB2-PrfH pair reverse the damage inflicted by ribosome-specific ribotoxins in vivo. Thus, our combined biochemical, structural, and cell-based studies have uncovered a bacterial defense system specifically evolved to reverse the lethal ribosomal damage in the decoding center for cell survival.


Sujet(s)
Amino acyl-tRNA synthetases , Protéines Escherichia coli , Grande sous-unité du ribosome des bactéries , Amino acyl-tRNA synthetases/composition chimique , Amino acyl-tRNA synthetases/génétique , Amino acyl-tRNA synthetases/métabolisme , Cryomicroscopie électronique , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/génétique , Protéines Escherichia coli/métabolisme , Conformation des protéines , Épissage des ARN , ARN de transfert/composition chimique , Grande sous-unité du ribosome des bactéries/effets des médicaments et des substances chimiques , Grande sous-unité du ribosome des bactéries/métabolisme
2.
Nat Commun ; 12(1): 6381, 2021 11 04.
Article de Anglais | MEDLINE | ID: mdl-34737303

RÉSUMÉ

Cyclic-oligonucleotide-based antiphage signaling systems (CBASS) are diverse and abundant in bacteria. Here, we present the biochemical and structural characterization of two CBASS systems, composed of CdnG and Cap5, from Asticcacaulis sp. and Lactococcus lactis. We show that CdnG from Asticcacaulis sp. synthesizes 3',2'-cGAMP in vitro, and 3',2'-cGAMP is the biological signaling molecule that activates Cap5 for DNA degradation. Crystal structures of Cap5, together with the SAVED domain in complex with 3',2'-cGAMP, provide insight into the architecture of Cap5 as well as molecular recognition of 3',2'-cGAMP by the SAVED domain of Cap5. Amino acid conservation of the SAVED domain of Cap5, together with mutational studies, led us to propose a mechanism of Back-to-Front stacking of two SAVED domains, mediated by 3',2'-cGAMP, to activate HNH nuclease domain for DNA degradation. This study of the most abundant CBASS system provides insights into the mechanisms employed by bacteria in their conflicts against phage.


Sujet(s)
Bactéries/métabolisme , Protéines bactériennes/métabolisme , Bactéries/génétique , Caulobacteraceae/génétique , Caulobacteraceae/métabolisme , Lactococcus lactis/génétique , Lactococcus lactis/métabolisme , Mutagenèse dirigée , Nucléotides cycliques/métabolisme
3.
Structure ; 27(11): 1613-1614, 2019 11 05.
Article de Anglais | MEDLINE | ID: mdl-31693909

RÉSUMÉ

In this issue of Structure, Gucinski et al. (2019) have described structural and enzymatic characterizations of two tRNase ribotoxins. The study significantly advances our understanding on the evolution and the mode of action of a group of ribotoxins that cleave the accepting stem of tRNAs for cell killing.


Sujet(s)
Colicines , Antibactériens , Protéines bactériennes , Endoribonucleases , Ribonucléases
4.
Nat Rev Microbiol ; 16(10): 629-645, 2018 10.
Article de Anglais | MEDLINE | ID: mdl-30181663

RÉSUMÉ

Candidate phyla radiation (CPR) bacteria and DPANN (an acronym of the names of the first included phyla) archaea are massive radiations of organisms that are widely distributed across Earth's environments, yet we know little about them. Initial indications are that they are consistently distinct from essentially all other bacteria and archaea owing to their small cell and genome sizes, limited metabolic capacities and often episymbiotic associations with other bacteria and archaea. In this Analysis, we investigate their biology and variations in metabolic capacities by analysis of approximately 1,000 genomes reconstructed from several metagenomics-based studies. We find that they are not monolithic in terms of metabolism but rather harbour a diversity of capacities consistent with a range of lifestyles and degrees of dependence on other organisms. Notably, however, certain CPR and DPANN groups seem to have exceedingly minimal biosynthetic capacities, whereas others could potentially be free living. Understanding of these microorganisms is important from the perspective of evolutionary studies and because their interactions with other organisms are likely to shape natural microbiome function.


Sujet(s)
Archéobactéries , Bactéries , Phénomènes physiologiques bactériens/génétique , Anaérobiose , Archéobactéries/génétique , Archéobactéries/métabolisme , Archéobactéries/physiologie , Bactéries/génétique , Bactéries/métabolisme , Bactéries anaérobies , Taille de la cellule , Génome d'archéobactérie/génétique , Génome d'archéobactérie/physiologie , Génome bactérien/génétique , Génome bactérien/physiologie , Phylogenèse , Symbiose
5.
J Biol Chem ; 293(36): 14122-14133, 2018 09 07.
Article de Anglais | MEDLINE | ID: mdl-30030381

RÉSUMÉ

Viperin is a radical SAM enzyme that has been shown to possess antiviral activity against a broad spectrum of viruses; however, its molecular mechanism is unknown. We report here that recombinant fungal and archaeal viperin enzymes catalyze the addition of the 5'-deoxyadenosyl radical (5'-dA•) to the double bond of isopentenyl pyrophosphate (IPP), producing a new compound we named adenylated isopentyl pyrophosphate (AIPP). The reaction is specific for IPP, as other pyrophosphate compounds involved in the mevalonate biosynthetic pathway did not react with 5'-dA• Enzymatic reactions employing IPP derivatives as substrates revealed that any chemical change in IPP diminishes its ability to be an effective substrate of fungal viperin. Mutational studies disclosed that the hydroxyl group on the side chain of Tyr-245 in fungal viperin is the likely source of hydrogen in the last step of the radical addition, providing mechanistic insight into the radical reaction catalyzed by fungal viperin. Structure-based molecular dynamics (MD) simulations of viperin interacting with IPP revealed a good fit of the isopentenyl motif of IPP to the active site cavity of viperin, unraveling the molecular basis of substrate specificity of viperin for IPP. Collectively, our findings indicate that IPP is an effective substrate of fungal and archaeal viperin enzymes and provide critical insights into the reaction mechanism.


Sujet(s)
Hémiterpènes/métabolisme , Composés organiques du phosphore/métabolisme , Adémétionine/métabolisme , Antiviraux , Domaine catalytique , Champignons/enzymologie , Simulation de dynamique moléculaire , Liaison aux protéines , Adémétionine/composition chimique , Spécificité du substrat
6.
Nat Commun ; 6: 6876, 2015 Apr 17.
Article de Anglais | MEDLINE | ID: mdl-25882814

RÉSUMÉ

Ribotoxins cleave essential RNAs for cell killing, and RNA repair neutralizes the damage inflicted by ribotoxins for cell survival. Here we report a new bacterial RNA repair complex that performs RNA repair linked to immunity. This new RNA repair complex is a 270-kDa heterohexamer composed of three proteins-Pnkp1, Rnl and Hen1-that are required to repair ribotoxin-cleaved RNA in vitro. The crystal structure of the complex reveals the molecular architecture of the heterohexamer as two rhomboid-shaped ring structures of Pnkp1-Rnl-Hen1 heterotrimer fused at the Pnkp1 dimer interface. The four active sites required for RNA repair are located on the inner rim of each ring. The architecture and the locations of the active sites of the Pnkp1-Rnl-Hen1 heterohexamer suggest an ordered series of repair reactions at the broken RNA ends that confer immunity to recurrent damage.


Sujet(s)
Protéines bactériennes/composition chimique , Methyltransferases/composition chimique , Complexes multienzymatiques/composition chimique , Phosphotransferases (Alcohol Group Acceptor)/composition chimique , RNA ligase (ATP)/composition chimique , ARN bactérien/métabolisme , Protéines bactériennes/génétique , Capnocytophaga/génétique , Domaine catalytique , Escherichia coli , Modèles moléculaires , Organismes génétiquement modifiés
7.
Nat Chem Biol ; 10(10): 810-2, 2014 Oct.
Article de Anglais | MEDLINE | ID: mdl-25151136

RÉSUMÉ

Approximately 25% of cytoplasmic tRNAs in eukaryotic organisms have the wobble uridine (U34) modified at C5 through a process that, according to genetic studies, is carried out by the eukaryotic Elongator complex. Here we show that a single archaeal protein, the homolog of the third subunit of the eukaryotic Elongator complex (Elp3), is able to catalyze the same reaction. The mechanism of action by Elp3 described here represents unprecedented chemistry performed on acetyl-CoA.


Sujet(s)
Protéines d'archée/métabolisme , Histone acetyltransferases/métabolisme , Methanocaldococcus/composition chimique , Sous-unités de protéines/métabolisme , ARN de transfert/métabolisme , Uridine/métabolisme , Séquence d'acides aminés , Protéines d'archée/composition chimique , Protéines d'archée/génétique , Biocatalyse , Séquence conservée , Escherichia coli/génétique , Escherichia coli/métabolisme , Radicaux libres/composition chimique , Radicaux libres/métabolisme , Expression des gènes , Histone acetyltransferases/composition chimique , Histone acetyltransferases/génétique , Methanocaldococcus/enzymologie , Données de séquences moléculaires , Protéines de tissu nerveux/composition chimique , Protéines de tissu nerveux/génétique , Protéines de tissu nerveux/métabolisme , Structure tertiaire des protéines , Sous-unités de protéines/composition chimique , Sous-unités de protéines/génétique , ARN de transfert/composition chimique , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Adémétionine/composition chimique , Adémétionine/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Similitude structurale de protéines , Uridine/composition chimique
8.
Proc Natl Acad Sci U S A ; 109(33): 13248-53, 2012 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-22847431

RÉSUMÉ

Ribotoxins cleave essential RNAs for cell killing in vivo, and the bacterial polynucleotide kinase-phosphatase (Pnkp)/hua enhancer 1 (Hen1) complex has been shown to repair ribotoxin-cleaved RNAs in vitro. Bacterial Pnkp/Hen1 is distinguished from other RNA repair systems by performing 3'-terminal 2'-O-methylation during RNA repair, which prevents the repaired RNA from repeated cleavage at the same site. To ensure the opportunity of 2'-O-methylation by bacterial Hen1 during RNA repair and, therefore, maintain the quality of the repaired RNA, Pnkp/Hen1 has evolved to require the participation of Hen1 in RNA ligation, because Pnkp alone is unable to carry out the reaction despite possessing all signature motifs of an RNA ligase. However, the precise role of Hen1 in RNA ligation is unknown. Here, we present the crystal structure of an active RNA ligase consisting of the C-terminal half of Pnkp (Pnkp-C) and the N-terminal half of Hen1 (Hen1-N) from Clostridium thermocellum. The structure reveals that the N-terminal domain of Clostridium thermocellum (Cth) Hen1, shaped like a left hand, grabs the flexible insertion module of CthPnkp and locks its conformation via further interaction with the C-terminal addition module of CthPnkp. Formation of the CthPnkp-C/Hen1-N heterodimer creates a ligation pocket with a width for two strands of RNA, depth for two nucleotides, and the adenosine monophosphate (AMP)-binding pocket at the bottom. The structure, combined with functional analyses, provides insight into the mechanism of how Hen1 activates the RNA ligase activity of Pnkp for RNA repair.


Sujet(s)
Protéines bactériennes/métabolisme , Clostridium thermocellum/métabolisme , RNA ligase (ATP)/métabolisme , ARN bactérien/métabolisme , Protéines bactériennes/composition chimique , Sites de fixation , Clostridium thermocellum/enzymologie , Modèles moléculaires , Protéines mutantes/composition chimique , Protéines mutantes/métabolisme , Multimérisation de protéines , Stabilité protéique , Structure secondaire des protéines
9.
Biochemistry ; 51(20): 4087-95, 2012 May 22.
Article de Anglais | MEDLINE | ID: mdl-22564049

RÉSUMÉ

In an RNA transcript, the 2'-OH group at the 3'-terminal nucleotide is unique as it is the only 2'-OH group that is adjacent to a 3'-OH group instead of a phosphate backbone. The 2'-OH group at the 3'-terminal nucleotide of certain RNAs is methylated in vivo, which is acheived by a methyltransferase named Hen1 that is mechanistically distinct from other known RNA 2'-O-methyltransferases. In eukaryotic organisms, 3'-terminal 2'-O-methylation of small RNAs stabilizes these small RNAs for RNA interference (RNAi). In bacteria, the same methylation during RNA repair results in repaired RNA resisting future damage at the site of repair. Although the chemistry performed by the eukaryotic and bacterial Hen1 is the same, the mechanisms of how RNA is stabilized as a result of the 3'-terminal 2'-O-methylation are different between the eukaryotic RNAi and the bacterial RNA repair. In this review, I will discuss the distribution of Hen1 in living organisms, the classification of Hen1 into four subfamilies, the structure and mechanism of Hen1 that allows it to conduct RNA 3'-terminal 2'-O-methylation, and the possible evolutionary origin of Hen1 present in bacterial and eukaryotic organisms.


Sujet(s)
Methyltransferases/métabolisme , Interférence par ARN , ARN bactérien/métabolisme , Séquence d'acides aminés , Animaux , Évolution moléculaire , Humains , Méthylation , Methyltransferases/classification , Données de séquences moléculaires , Petit ARN interférent/métabolisme , Relation structure-activité
10.
Structure ; 20(3): 389-90, 2012 Mar 07.
Article de Anglais | MEDLINE | ID: mdl-22404997

RÉSUMÉ

The Cmr complex carries out target RNA degradation in organisms possessing the CRISPR-Cas system. In this issue of Structure, Cocozaki et al. present the crystal structure of Cmr2, providing insight into the architecture of the Cmr complex.

11.
RNA ; 18(2): 335-44, 2012 Feb.
Article de Anglais | MEDLINE | ID: mdl-22190744

RÉSUMÉ

Ribotoxins cleave essential RNAs involved in protein synthesis as a strategy for cell killing. RNA repair systems exist in nature to counteract the lethal actions of ribotoxins, as first demonstrated by the RNA repair system from bacteriophage T4 25 yr ago. Recently, we found that two bacterial proteins, named Pnkp and Hen1, form a stable complex and are able to repair ribotoxin-cleaved tRNAs in vitro. However, unlike the well-studied T4 RNA repair system, the natural RNA substrates of the bacterial Pnkp/Hen1 RNA repair system are unknown. Here we present comprehensive RNA repair assays with the recombinant Pnkp/Hen1 proteins from Anabaena variabilis using a total of 33 different RNAs as substrates that might mimic various damaged forms of RNAs present in living cells. We found that unlike the RNA repair system from bacteriophage T4, the bacterial Pnkp/Hen1 RNA repair system exhibits broad substrate specificity. Based on the experimental data presented here, a model of preferred RNA substrates of the Pnkp/Hen1 repair system is proposed.


Sujet(s)
Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , ARN bactérien/génétique , ARN bactérien/métabolisme , ARN/génétique , ARN/métabolisme , Anabaena variabilis/génétique , Anabaena variabilis/métabolisme , ARN de transfert/génétique , ARN de transfert/métabolisme , Délétion de séquence , Spécificité du substrat
12.
Science ; 326(5950): 247, 2009 Oct 09.
Article de Anglais | MEDLINE | ID: mdl-19815768

RÉSUMÉ

Ribotoxins kill cells by endonucleotically cleaving essential RNAs involved in protein translation. We report here that a stable heterotetramer composed of two bacterial proteins, Pnkp and Hen1, was able to repair transfer RNAs cleaved by ribotoxins in vitro. Before the broken RNAs were ligated by the heterotetramer, a methyl group was added to the 2'-OH group that participated in the original RNA cut. Because of the methylation, RNAs repaired by bacterial Pnkp/Hen1 heterotetramer could not be cleaved again by the ribotoxins. Thus, unlike eukaryotic Hen1 involved in RNA interference, the bacterial Hen1 is part of an RNA repair and modification system.


Sujet(s)
Protéines bactériennes/métabolisme , ARN bactérien/métabolisme , ARN de transfert de l'arginine/métabolisme , ARN de transfert de l'acide aspartique/métabolisme , Anabaena , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Colicines/métabolisme , Endoribonucleases/métabolisme , Escherichia coli/métabolisme , Protéines Escherichia coli/métabolisme , Méthylation , Multimérisation de protéines , Protéines recombinantes/métabolisme
13.
Proc Natl Acad Sci U S A ; 106(42): 17699-704, 2009 Oct 20.
Article de Anglais | MEDLINE | ID: mdl-19822745

RÉSUMÉ

Small RNAs of approximately 20-30 nt have diverse and important biological roles in eukaryotic organisms. After being generated by Dicer or Piwi proteins, all small RNAs in plants and a subset of small RNAs in animals are further modified at their 3'-terminal nucleotides via 2'-O-methylation, carried out by the S-adenosylmethionine-dependent methyltransferase (MTase) Hen1. Methylation at the 3' terminus is vital for biological functions of these small RNAs. Here, we report four crystal structures of the MTase domain of a bacterial homolog of Hen1 from Clostridium thermocellum and Anabaena variabilis, which are enzymatically indistinguishable from the eukaryotic Hen1 in their ability to methylate small single-stranded RNAs. The structures reveal that, in addition to the core fold of the MTase domain shared by other RNA and DNA MTases, the MTase domain of Hen1 possesses a motif and a domain that are highly conserved and are unique to Hen1. The unique motif and domain are likely to be involved in RNA substrate recognition and catalysis. The structures allowed us to construct a docking model of an RNA substrate bound to the MTase domain of bacterial Hen1, which is likely similar to that of the eukaryotic counterpart. The model, supported by mutational studies, provides insight into RNA substrate specificity and catalytic mechanism of Hen1.


Sujet(s)
Methyltransferases/composition chimique , Methyltransferases/métabolisme , ARN/composition chimique , ARN/métabolisme , Séquence d'acides aminés , Anabaena variabilis/enzymologie , Anabaena variabilis/génétique , Animaux , Séquence nucléotidique , Sites de fixation/génétique , Domaine catalytique/génétique , Clostridium thermocellum/enzymologie , Clostridium thermocellum/génétique , Cristallographie aux rayons X , Humains , Méthylation , Methyltransferases/génétique , Modèles moléculaires , Données de séquences moléculaires , Mutagenèse dirigée , Conformation d'acide nucléique , Structure tertiaire des protéines , ARN/génétique , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Similitude de séquences d'acides aminés
14.
Arch Biochem Biophys ; 489(1-2): 15-9, 2009 Sep.
Article de Anglais | MEDLINE | ID: mdl-19664587

RÉSUMÉ

Pseudouridine (Psi) is formed through isomerization of uridine (U) catalyzed by a class of enzymes called pseudouridine synthases (PsiS). TruD is the fifth family of PsiS. Studies of the first four families (TruA, TruB, RsuA, and RluA) of PsiS reveal a conserved Asp and Tyr are critical for catalysis. However, in TruD family, the tyrosine is not conserved. In this study, we measured the enzymatic parameters for TruD in Escherichia coli, and carried out enzymatic assays for a series of single, double, and triple TruD mutants. Our studies indicate that a Glu, strictly conserved in only TruD family is likely to be the general base in TruD. We also proposed a possible distinct mechanism of TruD-catalyzed Psi formation compared to the first four families.


Sujet(s)
Protéines Escherichia coli/composition chimique , Escherichia coli/enzymologie , Intramolecular transferases/composition chimique , Uridine/composition chimique , Acide aspartique/composition chimique , Acide aspartique/génétique , Acide aspartique/métabolisme , Catalyse , Escherichia coli/génétique , Protéines Escherichia coli/génétique , Protéines Escherichia coli/métabolisme , Hydro-lyases/composition chimique , Hydro-lyases/génétique , Hydro-lyases/métabolisme , Intramolecular transferases/génétique , Intramolecular transferases/métabolisme , Isomérie , Mutation , Tyrosine/composition chimique , Tyrosine/génétique , Tyrosine/métabolisme , Uridine/génétique , Uridine/métabolisme
15.
Biochemistry ; 47(47): 12398-408, 2008 Nov 25.
Article de Anglais | MEDLINE | ID: mdl-18973345

RÉSUMÉ

To understand the mechanisms that govern T cell receptor (TCR)-peptide MHC (pMHC) binding and the role that different regions of the TCR play in affinity and antigen specificity, we have studied the TCR from T cell clone 2C. High-affinity mutants of the 2C TCR that bind QL9-L(d) as a strong agonist were generated previously by site-directed mutagenesis of complementarity determining regions (CDRs) 1beta, 2alpha, 3alpha, or 3beta. We performed isothermal titration calorimetry to assess whether they use similar thermodynamic mechanisms to achieve high affinity for QL9-L(d). Four of the five TCRs examined bound to QL9-L(d) in an enthalpically driven, entropically unfavorable manner. In contrast, the high-affinity CDR1beta mutant resembled the wild-type 2C TCR interaction, with favorable entropy. To assess fine specificity, we measured the binding and kinetics of these mutants for both QL9-L(d) and a single amino acid peptide variant of QL9, called QL9-Y5-L(d). While 2C and most of the mutants had equal or higher affinity for the Y5 variant than for QL9, mutant CDR1beta exhibited 8-fold lower affinity for Y5 compared to QL9. To examine possible structural correlates of the thermodynamic and fine specificity signatures of the TCRs, the structure of unliganded QL9-L(d) was solved and compared to structures of the 2C TCR/QL9-L(d) complex and three high-affinity TCR/QL9-L(d) complexes. Our findings show that the QL9-L(d) complex does not undergo major conformational changes upon binding. Thus, subtle changes in individual CDRs account for the diverse thermodynamic and kinetic binding mechanisms and for the different peptide fine specificities.


Sujet(s)
Oligopeptides/métabolisme , Récepteurs aux antigènes des cellules T/composition chimique , Récepteurs aux antigènes des cellules T/métabolisme , Séquence d'acides aminés , Animaux , Cricetinae , Cinétique , Ligands , Souris , Modèles moléculaires , Mutation , Oligopeptides/composition chimique , Liaison aux protéines , Conformation des protéines , Rats , Récepteurs aux antigènes des cellules T/génétique , Spécificité du substrat , Thermodynamique , Transfection
16.
Proc Natl Acad Sci U S A ; 105(42): 16142-7, 2008 Oct 21.
Article de Anglais | MEDLINE | ID: mdl-18852462

RÉSUMÉ

Hypermodifications near the anticodon of tRNA are fundamental for the efficiency and fidelity of protein synthesis. Dimethylallyltransferase (DMATase) catalyzes transfer of a dimethylallyl moiety from dimethylallyl pyrophosphate to N6 of A37 in certain tRNAs. Here we present the crystal structures of Saccharomyces cerevisiae DMATase-tRNA(Cys) complex in four distinct forms, which provide snapshots of the RNA modification reaction catalyzed by DMATase. The structures reveal that the enzyme recognizes the tRNA substrate through indirect sequence readout. The targeted nucleotide A37 flips out from the anticodon loop of tRNA and flips into a channel in DMATase, where it meets its reaction partner di methylallyl pyrophosphate, which enters the channel from the opposite end. Structural changes accompanying the transfer reaction taking place in the crystal result in disengagement of DMATase-tRNA interaction near the reaction center. In addition, structural comparison of DMATase in the complex with unliganded bacterial DMATase provides a molecular basis of ordered substrate binding by DMATase.


Sujet(s)
Dimethylallyltransferase/composition chimique , Dimethylallyltransferase/métabolisme , Conformation d'acide nucléique , ARN de transfert/composition chimique , ARN de transfert/métabolisme , Saccharomyces cerevisiae/enzymologie , Séquence d'acides aminés , Catalyse , Séquence conservée , Cristallographie aux rayons X , Modèles moléculaires , Phosphates/composition chimique , Phosphates/métabolisme , Liaison aux protéines , Structure tertiaire des protéines , Saccharomyces cerevisiae/génétique , Spécificité du substrat
18.
J Mol Biol ; 367(3): 872-81, 2007 Mar 30.
Article de Anglais | MEDLINE | ID: mdl-17292915

RÉSUMÉ

Dimethylallyltransferase (DMATase) transfers a five-carbon isoprenoid moiety from dimethylallyl pyrophosphate (DMAPP) to the amino group of adenosine at position 37 of certain tRNAs. Reported here are the crystal structures of Pseudomonas aeruginosa DMATase alone and in complex with pyrophosphate at 1.9 A resolution. Surprisingly, the enzyme possesses a central channel spanning the entire width of the enzyme. Both the accepting substrate tRNA and the donating substrate DMAPP appear to enter the channel from opposite sides in an ordered sequence, with tRNA first and DMAPP second, and the RNA modification reaction occurs in the middle of the channel once the two substrates have met. The structure of DMATase is homologous to a class of small soluble kinases involved in biosynthesis of nucleotide precursors for nucleic acids, indicating its possibly evolutionary origin. Furthermore, specific recognition of the pyrophosphate by a conserved loop in DMATase, similar to the P-loop commonly seen in diverse nucleotide-binding proteins, demonstrates that DMATase is structurally and mechanistically distinct from farnesyltransferase, another family of prenyltransferases involved in protein modification.


Sujet(s)
Dimethylallyltransferase/composition chimique , Dimethylallyltransferase/métabolisme , ARN de transfert/composition chimique , ARN de transfert/métabolisme , Séquence d'acides aminés , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Sites de fixation , Cristallographie aux rayons X , Dimethylallyltransferase/génétique , Évolution moléculaire , Modèles moléculaires , Données de séquences moléculaires , Conformation des protéines , Pseudomonas aeruginosa/enzymologie , Pseudomonas aeruginosa/génétique , ARN bactérien/composition chimique , ARN bactérien/métabolisme , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Similitude de séquences d'acides aminés , Électricité statique
19.
J Mol Biol ; 358(2): 571-9, 2006 Apr 28.
Article de Anglais | MEDLINE | ID: mdl-16524591

RÉSUMÉ

Colicin E5 is a tRNA-specific ribonuclease that recognizes and cleaves four tRNAs in Escherichia coli that contain the hypermodified nucleoside queuosine (Q) at the wobble position. Cells that produce colicin E5 also synthesize the cognate immunity protein (Im5) that rapidly and tightly associates with colicin E5 to prevent it from cleaving its own tRNAs to avoid suicide. We report here the crystal structure of Im5 in a complex with the activity domain of colicin E5 (E5-CRD) at 1.15A resolution. The structure reveals an extruded domain from Im5 that docks into the recessed RNA binding cleft in E5-CRD, resulting in extensive interactions between the two proteins. The interactions are primarily hydrophilic, with an interface that contains complementary surface charges between the two proteins. Detailed interactions in three separate regions of the interface account for specific recognition of colicin E5 by Im5. Furthermore, single-site mutational studies of Im5 confirmed the important role of particular residues in recognition and binding of colicin E5. Structural comparison of the complex reported here with E5-CRD alone, as well as with a docking model of RNA-E5-CRD, indicates that Im5 achieves its inhibition by physically blocking the cleft in colicin E5 that engages the RNA substrate.


Sujet(s)
Protéines bactériennes/composition chimique , Colicines/composition chimique , Protéines Escherichia coli/composition chimique , Ribonucléases/antagonistes et inhibiteurs , Sites de fixation , Colicines/génétique , Cristallographie aux rayons X , Escherichia coli/effets des médicaments et des substances chimiques , Escherichia coli/génétique , Protéines Escherichia coli/génétique , Modèles moléculaires , Mutation , Conformation des protéines , ARN bactérien , ARN de transfert
20.
Biochemistry ; 44(47): 15488-94, 2005 Nov 29.
Article de Anglais | MEDLINE | ID: mdl-16300397

RÉSUMÉ

Sequence alignment of the TruA, TruB, RsuA, and RluA families of pseudouridine synthases (PsiS) identifies a strictly conserved aspartic acid, which has been shown to be the critical nucleophile for the PsiS-catalyzed formation of pseudouridine (Psi). However, superposition of the representative structures from these four families of enzymes identifies two additional amino acids, a lysine or an arginine (K/R) and a tyrosine (Y), from a K/RxY motif that are structurally conserved in the active site. We have created a series of Thermotoga maritima and Escherichia coli pseudouridine 55 synthase (Psi55S) mutants in which the conserved Y is mutated to other amino acids. A new crystal structure of the T. maritima Psi55S Y67F mutant in complex with a 5FU-RNA at 2.4 A resolution revealed formation of 5-fluoro-6-hydroxypseudouridine (5FhPsi), the same product previously seen in wild-type Psi55S-5FU-RNA complex structures. HPLC analysis confirmed efficient formation of 5FhPsi by both Psi55S Y67F and Y67L mutants but to a much lesser extent by the Y67A mutant when 5FU-RNA substrate was used. However, both HPLC analysis and a tritium release assay indicated that these mutants had no detectable enzymatic activity when the natural RNA substrate was used. The combined structural and mutational studies lead us to propose that the side chain of the conserved tyrosine in these four families of PsiS plays a dual role within the active site, maintaining the structural integrity of the active site through its hydrophobic phenyl ring and acting as a general base through its OH group for the proton abstraction required in the last step of PsiS-catalyzed formation of Psi.


Sujet(s)
Lyases intramoléculaires/composition chimique , Lyases intramoléculaires/métabolisme , Tyrosine , Sites de fixation , Catalyse , Domaine catalytique , Séquence conservée , Cristallographie aux rayons X , Escherichia coli/enzymologie , Lyases intramoléculaires/génétique , Intramolecular transferases , Mutation faux-sens , ARN/métabolisme , Spécificité du substrat , Thermotoga maritima/enzymologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE