Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 13 de 13
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Ethnopharmacol ; 335: 118606, 2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39038504

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: Palmatine is a main bioactive alkaloid of Cortex Phellodendri, which has been commonly prescribed for the treatment of hyperuricemia (HUA) in China. The metabolites of palmatine were crucial to its prominent biological activity. 9-Hydroxy-8-oxypalmatine (9-OPAL) is a novel liver-mediated secondary oxymetabolite of palmatine. AIM OF THE STUDY: The current study was to assess the efficacy of 9-OPAL, a novel liver-mediated secondary oxymetabolite of palmatine derived from Cortex Phellodendri, in experimental HUA mouse model and further explore its underlying mechanism. MATERIALS AND METHODS: An in vitro metabolic experiment with oxypalmatine was carried out using liver samples. We separated and identified a novel liver metabolite, and investigated its anti-HUA effect in mice. HUA mice were induced by potassium oxonate and hypoxanthine daily for one week. After 1 h of modeling, mice were orally administered with different doses of 9-OPAL (5, 10 and 20 mg/kg). The pathological changes of the kidneys were evaluated using hematoxylin-eosin staining (H&E). The acute toxicity of 9-OPAL was assessed. The effects of 9-OPAL on serum levels of uric acid (UA), adenosine deaminase (ADA), xanthine oxidase (XOD), creatinine (CRE), blood urea nitrogen (BUN) and inflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA) or biochemical method. Furthermore, Western blot, quantitative real-time PCR (qRT-PCR) and molecular docking were used to investigate the effect of 9-OPAL on the expression of renal urate transporters and NLRP3 signaling pathway in HUA mice. RESULTS: 9-OPAL had been discovered to be a novel liver-mediated oxymetabolite of palmatine for the first time. Treatment with 9-OPAL significantly reduced the UA, CRE as well as BUN levels, and also effectively attenuated abnormal renal histopathological deterioration with favorable safety profile. Besides, 9-OPAL significantly decreased the serum and hepatic activities of XOD and ADA, dramatically inhibited the up-regulation of UA transporter protein 1 (URAT1) and glucose transporter protein 9 (GLUT9), and reversed the down-regulation of organic anion transporter protein 1 (OAT1). Additionally, 9-OPAL effectively mitigated the renal inflammatory markers (TNF-α, IL-1ß, IL-6 and IL-18), and downregulated the transcriptional and translational expressions of renal Nod-like receptor family pyrin domain containing 3 (NLRP3), caspase-1, apoptosis-associated speck-like (ASC) and IL-1ß in HUA mice. Molecular docking results revealed 9-OPAL bound firmly with XOD, OAT1, GLUT9, URAT1, NLRP3, caspase-1, ASC and IL-1ß. CONCLUSIONS: 9-OPAL was found to be a novel liver-mediated secondary metabolite of palmatine with favorable safety profile. 9-OPAL had eminent anti-hyperuricemic and renal-protective effects, and the mechanisms might be intimately associated with repressing XOD activities, modulating renal urate transporter expression and suppressing the NLRP3 inflammasome activation. Our investigation might also provide further experimental evidence for the traditional application of Cortex Phellodendri in the treatment of HUA.

2.
Microorganisms ; 12(5)2024 May 13.
Article de Anglais | MEDLINE | ID: mdl-38792807

RÉSUMÉ

Gut microbes thrive by utilising host energy and, in return, provide valuable benefits, akin to a symbiotic relationship. Here, metagenomic sequencing was performed to characterise and compare the community composition, diversity and antibiotic resistance of the gut microbiota of Relict gull (Larus relictus) and Anatidae species. Alpha diversity analysis revealed that the intestinal microbial richness of L. relictus was significantly lower than that of Anatidae, with distinct differences observed in microbial composition. Notably, the intestines of L. relictus harboured more pathogenic bacteria such as clostridium, which may contribute to the decline in their population and endangered status. A total of 117 strains of Escherichia coli were isolated, with 90.60% exhibiting full susceptibility to 21 antibiotics, while 25.3% exhibited significant biofilm formation. Comprehensive Antibiotic Resistance Database data indicated that glycopeptide resistance genes were the most prevalent type carried by migratory birds, alongside quinolone, tetracycline and lincosamide resistance genes. The abundance of resistance genes carried by migratory birds decreased over time. This metagenomic analysis provides valuable insights into the intestinal microbial composition of these wild bird species, offering important guidance for their conservation efforts, particularly for L. relictus, and contributing to our understanding of pathogen spread and antibiotic-resistant bacteria.

3.
J Ethnopharmacol ; 314: 116600, 2023 Oct 05.
Article de Anglais | MEDLINE | ID: mdl-37196811

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: Rhizoma Coptidis (RC), the dried rhizome of Coptis Chinensis Franch., can dispel dampness and heat within the body and has been traditionally used for the treatment of cardiovascular disease (CVD)-associated problems including hyperlipidemia in China. Berberine (BBR) is the main active component of RC, which has been shown to possess significant therapeutic potential. However, only 0.14% of BBR is metabolized in the liver, and the extremely low bioavailability (<1%) and blood concentration of BBR in experimental and clinical settings is insufficient to achieve the effects as observed under in vitro conditions, which imposes challenges to explain its excellent pharmacological actions. Intense efforts are currently being devoted to defining its specific pharmacological molecular targets, while the exploration from the perspective of its pharmacokinetic disposition has rarely been reported to date, which could hardly make a comprehensive understanding of its hypolipidemic enigma. AIM OF THE STUDY: This study made a pioneering endeavor to unveil the hypolipidemic mechanism of BBR from RC focusing on its unique intestines-erythrocytes-mediated bio-disposition. MATERIALS AND METHODS: The fate of BBR in intestines and erythrocytes was probed by a rapid and sensitive LC/MS-IT-TOF method. To analyze the disposition of BBR, a reliable HPLC method was subsequently developed and validated for simultaneous determination of BBR and its key active metabolite oxyberberine (OBB) in whole blood, tissues, and excreta. Meanwhile, the enterohepatic circulation (BDC) of BBR and OBB was verified by bile duct catheterization rats. Finally, lipid overloading models of L02 and HepG2 cells were employed to probe the lipid-lowering activity of BBR and OBB at in vivo concentration. RESULTS: The results showed that BBR underwent biotransformation in both intestines and erythrocytes, and converted into the major metabolite oxyberberine (OBB). The AUC0-t ratio of total BBR to OBB was approximately 2:1 after oral administration. Besides, the AUC0-t ratio of bound BBR to its unbound counterpart was 4.6:1, and this ratio of OBB was 2.5:1, indicative of abundant binding-type form in the blood. Liver dominated over other organs in tissue distribution. BBR was excreted in bile, while the excretion of OBB in feces was significantly higher than that in bile. Furthermore, the bimodal phenomenon of both BBR and OBB disappeared in BDC rats and the AUC0-t was significantly lower than that in the sham-operated control rats. Interestingly, OBB significantly decreased triglycerides and cholesterol levels in lipid overloading models of L02 and HepG2 cells at in vivo-like concentration, which was superior to the prodrug BBR. CONCLUSIONS: Cumulatively, BBR underwent unique extrahepatic metabolism and disposition into OBB by virtue of intestines and erythrocytes. BBR and OBB were mainly presented and transported in the protein-bound form within the circulating erythrocytes, potentially resulting in hepatocyte targeting accompanied by obvious enterohepatic circulation. The unique extrahepatic disposition of BBR via intestines and erythrocytes conceivably contributed enormously to its hypolipidemic effect. OBB was the important material basis for the hypolipidemic effect of BBR and RC.


Sujet(s)
Berbérine , Rats , Animaux , Berbérine/pharmacologie , Berbérine/usage thérapeutique , Extraits de plantes/pharmacologie , Triglycéride/métabolisme , Intestins , Érythrocytes/métabolisme
4.
Theriogenology ; 196: 97-105, 2023 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-36413869

RÉSUMÉ

Pyometra is a common and high-incidence reproductive system disease in female dogs, and its development involves both hormonal and bacterial factors. Characterization of the endometrial microbiome in healthy dogs and diseased dogs with pyometra remains unclear at present, however. In this study, dogs with pyometra were identified based on the clinical examinations, hematology examinations, vaginal smears and uterine histopathology. The endometrial samples of healthy dogs (n = 30) and diseased dogs (n = 41) were then collected and sequenced by 16S rRNA high-throughput sequencing technology. Dogs with pyometra suffered from inflammation, and their endometrial microbial diversity (ACE and Chao 1 indices) was significantly lower than that of healthy dogs (P < 0.05). The endometrial samples of both groups were enriched in four phyla (Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria), with a greater abundance of Firmicutes in diseased dogs (P < 0.05). At the genus level, the most prevalent microbes in diseased dogs belonged to Pseudomonas, Escherichia-Shigella, Mycoplasma, Enterococcus, Haemophilus, Vibrio and Ralstonia, with lower levels of Mycoplasma, Enterococcus and Haemophilus in the healthy control. Principal co-ordinates analysis and non-metric multi-dimensional scaling showed that the endometrial microbiome of diseased dogs clustered separately from that of the healthy controls (P < 0.05). In the LDA effect size analysis, 18 members of the endometrial microbiome were screened. Of these, the bacterial species Pseudomonas_aeruginosa and microbes within the genera Mycoplasma, Enterococcus and Haemophilus were found to be enriched in the uteruses of diseased dogs. Furthermore, the Random Forests model further confirmed that Mycoplasma and Haemophilus could be considered as biomarkers of diseased endometrium. In conclusion, this study provided a theoretical basis for the development of probiotic preparation in the future.


Sujet(s)
État de santé , Femelle , Chiens , Animaux , ARN ribosomique 16S/génétique
5.
J Ethnopharmacol ; 301: 115775, 2023 Jan 30.
Article de Anglais | MEDLINE | ID: mdl-36198377

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: Palmatine (Pal) is a major bioactive alkaloid originated from ancient Chinese herbal medicine Cortex Phellodendri Amurensis (CPA), which has long been applied to treat hyperuricemia (HUA)-related diseases. Pal possesses potent anti-inflammatory and anti-oxidant effects against metabolic diseases. However, its potential beneficial effect against PO (potassium oxonate)/HX (hypoxanthine)-induced HUA remains elusive. AIM OF THE STUDY: This study aimed to investigate the potential pharmacological effect and mechanism of Pal on PO/HX-induced HUA in mice. MATERIAL AND METHODS: A mouse model of HUA was established by co-administration of PO/HX once daily for 7 consecutive days. The HUA mice were orally given three doses (25, 50 and 100 mg/kg) of Pal daily for a week. Febuxostat (Feb, 5 mg/kg) was given as a positive control. At the scheduled termination of the experiment, the whole blood, liver and kidney were collected for subsequent analyses. The concentrations of uric acid (UA), creatinine (CRE) and blood urea nitrogen (BUN), and activities of adenosine deaminase (ADA) and xanthine oxidase (XOD) were evaluated. Histopathological alterations of the kidney were detected by H&E staining. The inflammatory and oxidative stress status was detected by assay kits. Additionally, key proteins involved in the urate transporter, Keap1-Nrf2 and TXNIP/NLRP3 signaling pathways were evaluated by immunohistochemistry and Western blotting. Finally, molecular docking was employed to probe the binding characteristics of Pal and target proteins Keap1, NLRP3, URAT1 and HO-1. RESULTS: Administration of Pal substantially decreased the elevated kidney weight, lowered UA, CRE and BUN levels, and attenuated abnormal histopathological alterations. Meanwhile, treatment with Pal also dramatically lowered hepatic XOD and ADA activities. Besides, Pal treatment effectively mitigated the renal inflammatory and oxidative stress markers. Further mechanistic investigation indicated Pal distinctly downregulated the protein levels of GLUT9 and URAT1, while up-regulated the expression levels of OAT1 and ABCG2. Pal also restored Nrf2 activation, promoted subsequent expression of anti-oxidative enzymes, and downregulated the expressions of TXNIP, NLRP3, apoptosis-associated speck-like (ASC), caspase-1, IL-1ß and IL-18. Molecular docking analysis also indicated Pal firmly bound with Keap1, NLRP3, URAT1 and HO-1. CONCLUSIONS: These findings indicated that Pal exhibited favorable anti-HUA effect via modulating the expressions of transporter-related proteins and suppressing XOD activity. Furthermore, Pal also alleviated HUA-induced kidney injury, which was at least partially related to restoring Keap1-Nrf2 pathway and inhibiting TXNIP/NLRP3 inflammasome. Our investigation was envisaged to provide experimental support for the traditional application of CPA and CPA-containing classical herbal formulas in the management of HUA-related diseases and might provide novel dimension to the clinical application of Pal.


Sujet(s)
Hyperuricémie , Acide urique , Souris , Animaux , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Protéine-1 de type kelch associée à ECH/métabolisme , Facteur-2 apparenté à NF-E2/métabolisme , Simulation de docking moléculaire , Hyperuricémie/induit chimiquement , Hyperuricémie/traitement médicamenteux , Hyperuricémie/métabolisme , Xanthine oxidase/métabolisme , Rein , Créatinine
6.
Int J Mol Sci ; 23(22)2022 Nov 16.
Article de Anglais | MEDLINE | ID: mdl-36430638

RÉSUMÉ

Canine pyometra frequently occurs in middle-aged to older intact bitches, which seriously affects the life of dogs and brings an economic loss to their owners. Hence, finding a key metabolite is very important for the diagnosis and development of a new safe and effective therapy for the disease. In this study, dogs with pyometra were identified by blood examinations, laboratory analyses and diagnostic imaging, and fifteen endometrium tissues of sick dogs with pyometra and fifteen controls were collected and their metabolites were identified utilizing a UHPLC-qTOF-MS-based untargeted metabolomics approach. The results indicated that the elevated inflammatory cells were observed in dogs with pyometra, suggesting that sick dogs suffered systemic inflammation. In the untargeted metabolic profile, 705 ion features in the positive polarity mode and 414 ion features in the negative polarity mode were obtained in endometrium tissues of sick dogs with pyometra, with a total of 275 differential metabolites (173 in positive and 102 in negative polarity modes). Moreover, the multivariate statistical analyses such as PCA and PLS-DA also showed that the metabolites were significantly different between the two groups. Then, these differential metabolites were subjected to pathway analysis using Metaboanalyst 4.0, and Galactose metabolism, cAMP signaling pathway and Glycerophospholipid metabolism were enriched, proving some insights into the metabolic changes during pyometra. Moreover, the receiver operating characteristic curves further confirmed kynurenic acid was expected to be a candidate biomarker of canine pyometra. In conclusion, this study provided a new idea for exploring early diagnosis methods and a safe and effective therapy for canine pyometra.


Sujet(s)
Maladies des chiens , Pyométrie , Femelle , Humains , Chiens , Animaux , Pyométrie/médecine vétérinaire , Pyométrie/métabolisme , Maladies des chiens/métabolisme , Métabolomique , Inflammation , Marqueurs biologiques
7.
Int J Mol Sci ; 23(18)2022 Sep 18.
Article de Anglais | MEDLINE | ID: mdl-36142841

RÉSUMÉ

Canine mammary tumor (CMT) is the most common tumor in dogs, with 50% of malignant cases, and lacks an effective therapeutic schedule, hence its early diagnosis is of great importance to achieve a good prognosis. Microbiota is believed to play important roles in systemic diseases, including cancers. In this study, 91 tumors, 21 oral and fecal samples in total were collected from dogs with CMTs, and 31 oral and 21 fecal samples from healthy dogs were collected as control. The intratumoral, oral and gut bacterial community of dogs with CMTs and healthy dogs was profiled by 16S rRNA high-throughput sequencing and bioinformatic methods. The predominant intratumoral microbes were Ralstonia, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Pseudomonas, unidentified_Chloroplast and Bacteroides at the genus level. In addition, our findings demonstrated striking changes in the composition of the oral and gut bacterium community in the dogs suffered from CMTs compared to the healthy dogs, with a significant increase of Bacteroides which also was the significant microbial biomarker in the oral and gut bacterium community. It showed that the Bacteroides was shared in the intratumoral, oral and intestinal bacterial microbiomes, confirming that microbiota might travel from the mouth to the intestine and finally to the distant mammary tumor tissue. This study provides a new microbiological idea for the treatment of canine mammary tumors, and also provides a theoretical basis for the study of human breast cancer.


Sujet(s)
Tumeurs du sein , Tumeurs mammaires de l'animal , Microbiote , Animaux , Bactéries/génétique , Chiens , Dysbiose/microbiologie , Dysbiose/médecine vétérinaire , Fèces/microbiologie , Femelle , Humains , ARN ribosomique 16S/génétique
8.
Front Vet Sci ; 9: 843390, 2022.
Article de Anglais | MEDLINE | ID: mdl-35812867

RÉSUMÉ

Epidemiological studies enable us to analyze disease behavior, define risk factors, and establish fundamental prognostic criteria. This study aimed to determine the epidemiological and clinical characteristics of canine tumors diagnosed during the years 2017-2021. The results showed that canine mammary tumors were the most common tumors, and their relative incidence for 5-years-total was 46.71% (504/1,079), with 48.41% (244/504) of benign, and 51.59% (260/504) of malignant. Pure breeds accounted for 84.13% (424/504) of submissions, and adult female dogs (9-12 years old) were most frequently involved, followed by 5-8-year-old females. Remarkably, 2.58% (13/504) occurred in the male dogs. In addition, a high prevalence of mammary tumors (77.38%, 390/504) was diagnosed in unneutered dogs, and different incidence rates were observed in different regions (Northeast, Southeast, Northwest and Southwest China). For clinical factors, the tumor size ranged from 0.5 to 28 cm, with the 0-5 cm being the most common tumor size (47.82%, 241/504), and malignant tumors (4.33 ± 2.88 cm, mean ± SD) were bigger than benign ones (3.06 ± 1.67 cm, mean ± SD) (p < 0.001). The incidence of single tumor (55.36%, 279/504) was higher than that of multiple tumors in dogs, while the latter had a higher incidence of malignant tumors (74.67%, 168/225). According to this study, we also found that canine mammary tumors were more common in the last two pairs of mammary glands. In addition, multiple linear regression analysis showed that there was linear significant relationship between three independent variables (age, tumor size, and tumor number) and histological properties of canine mammary tumor [(p>|t|) < 0.05]. This is the first retrospective statistical analysis of such a large dataset in China to reveal the link between epidemiological clinical risks and histological diagnosis. It aids in the improvement of the host's knowledge of canine tumor disorders and the early prevention of canine mammary tumors.

9.
Mol Biol Rep ; 49(9): 8943-8951, 2022 Sep.
Article de Anglais | MEDLINE | ID: mdl-35841467

RÉSUMÉ

Mammary tumors are the most frequent neoplasia in old female dogs and present challenges in diagnosis and prognosis owing to heterogeneity. Along with the rapid development of biotechnology, the molecular subtyping of canine mammary carcinomas has been researched, and provides an important reference basis for diagnosis, treatment, prognosis, and even prediction of recurrence rate. Therefore, the molecular classification of canine mammary carcinomas has gained a broad clinical application prospect. However, the existing molecular markers of canine mammary carcinomas are still unable to meet the expanding clinical needs with poor clinical feasibility. Thus, it is urgent to develop more applicable biomarkers appropriate for personalized treatment modalities. At present, the molecular typing of canine mammary carcinomas is not fully understood, and it is first reviewed in this study.


Sujet(s)
Carcinomes , Maladies des chiens , Tumeurs mammaires de l'animal , Animaux , Carcinomes/anatomopathologie , Maladies des chiens/diagnostic , Maladies des chiens/génétique , Chiens , Femelle , Tumeurs mammaires de l'animal/diagnostic , Tumeurs mammaires de l'animal/génétique , Typage moléculaire
10.
Article de Anglais | MEDLINE | ID: mdl-35677366

RÉSUMÉ

Berberine (BBR), a major active constituent of Rhizoma coptidis, was reported to exert beneficial effects on intestinal mucositis (IM) induced by 5-fluorouracil (5-FU). However, the bioavailability of BBR is extremely low, and its metabolites were perceived to contribute to its prominent pharmacological activities. Oxyberberine (OBB) is a gut metabolite of BBR, which has been reported to have a superior anti-inflammatory effect in experimental colitis. However, its anti-inflammatory effects against 5-FU-induced IM mice have not yet been investigated. Hence, the purpose of this study was to reveal the protective effects of OBB on IM induced by 5-FU and investigate its potential underlying mechanism. The IM mice model was induced by receiving 5-FU (60 mg/kg, i.p.) for five days. Meanwhile, BBR (50 mg/kg) and OBB (12.5, 25, and 50 mg/kg) were given prior to 30 min intraperitoneal injection of 5-FU for seven days. Results indicated that OBB ameliorated body weight loss, anorexia, diarrhea, and histopathological damage in 5-FU-induced IM mice. After OBB administration, the amounts of MDA, SOD, and GSH altered by IM were remarkably restored. OBB was also observed to dramatically decrease the levels of TNF-α, IL-8, IL-6, COX-2, and iNOS and promote the release of IL-10. Besides, OBB distinctly upregulated the mRNA expressions of PCNA, ZO-1, occludin, and mucin-1, which could improve intestinal homeostasis in IM mice. OBB also blocked the activation of the upstream TLR4/MyD88 signaling pathway, and then it inhibited the phosphorylation of the NF-κB and MAPK pathways. Importantly, compared with BBR, OBB displayed a superior therapeutic effect to BBR in alleviating 5-FU-induced IM mice. These results indicated that OBB has considerable potential to become a novel candidate drug against IM.

11.
Food Chem Toxicol ; 166: 113215, 2022 Aug.
Article de Anglais | MEDLINE | ID: mdl-35691465

RÉSUMÉ

Oxyberberine (OBB), a main gut-mediated metabolite of Phellodendron chinense Cortex (PC), exhibits prominent protective property against acute liver injury (ALI). Heme oxygenase-1 (HO-1) is a vital molecule in attenuating acute and chronic liver injury for its prominent anti-oxidative injury and anti-inflammation properties. The present study was performed to investigate the hepatoprotective role of OBB through HO-1 signaling pathway in lipopolysaccharide/D-galactosamine (LPS/D-GalN) induced ALI. Our results indicated that PC treatment improved survival rate and its metabolite OBB evidently improved histopathological deteriorations and liver function. Additionally, OBB dramatically ameliorated hepatic oxidative stress and inflammation. Besides, OBB exerted remarkable HO-1 agonistic activity, even be comparable to hemin (a HO-1 inducer), as evidenced by increased HO-1 level, carbon monoxide and bilirubin activities, which are the markers of erythrocyte metabolism. Moreover, OBB modulated the parameters of inflammation and oxidative stress through HO-1 dependent pathway. Beyond this, OBB also notably suppressed the translocation of p65, enhanced antioxidation defense genes expressions, promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nrf2). In conclusion, OBB could be the principle active metabolite substance of PC and exert excellent hepatoprotective effects via inducing HO-1 through coactivation of erythrocyte metabolism and Nrf2/HO-1 pathway.


Sujet(s)
Lésions hépatiques dues aux substances , Galactosamine , Animaux , Lésions hépatiques dues aux substances/métabolisme , Érythrocytes/métabolisme , Galactosamine/toxicité , Heme oxygenase-1/génétique , Heme oxygenase-1/métabolisme , Inflammation/induit chimiquement , Inflammation/traitement médicamenteux , Inflammation/métabolisme , Protéine-1 de type kelch associée à ECH/métabolisme , Lipopolysaccharides/pharmacologie , Foie , Souris , Facteur-2 apparenté à NF-E2/génétique , Facteur-2 apparenté à NF-E2/métabolisme , Stress oxydatif , Transduction du signal
12.
Phytomedicine ; 101: 154135, 2022 Jul.
Article de Anglais | MEDLINE | ID: mdl-35509133

RÉSUMÉ

BACKGROUND: Oxyberberine (OBB), an important in vivo metabolite of berberine, exerts superior hypoglycemia effect. However, the underlying mechanism remains obscure. Heme oxygenase-1 (HO-1) holds a crucial status in the pathogenesis of diabetes. Previous research has indicated that OBB can specifically bind to hemoglobin and significantly up-regulated the HO-1 expression in diabetic rat. Based on cellular protection features of HO-1, this work aimed to probe the anti-diabetic effect of OBB and the association with the potential induction of HO-1 expression. METHODS: A type 2 diabetic mellitus rat model was established. Glucolipid metabolism and insulin sensitivity were analyzed. Immunohistochemistry, Western blotting and in silico simulations were also performed. RESULTS: Administration of OBB or HO-1 inducer hemin significantly reduced fasting blood glucose level, blood fat, and inflammatory cytokine levels, while increased antioxidant capacity of pancreas. Meanwhile, OBB treatment remarkably stimulated liver glycogenesis and inhibited gluconeogenesis. Besides, OBB improved the glucose utilizing of muscle. Noteworthily, OBB inhibited the islet cell apoptosis and improved pancreatic function. In addition, OBB effectively improved the consumption of glucose in insulin-resistant HepG2 cells. Moreover, OBB also reduced oxidative stress, promoted glucose-elicited insulin secretion and enhanced expression of ß-cell function proteins in INS-1 cells. Nevertheless, these effects were significantly reversed by treatment with Zincprotoporphrin (ZnPP). Additionally, in silico simulations indicated that OBB exhibited superior affinity with HO-1. CONCLUSION: OBB effectively ameliorated hyperglycemia, dyslipidemia, and insulin resistance, improved oral glucose tolerance, and maintained glucose metabolism homeostasis, at least in part, by promoting HO-1-mediated activation of phosphoinositide 3-kinase / protein kinase B (PI3K/Akt) and AMP-activated protein kinase (AMPK) pathways. These data eloquently suggest that OBB, as a novel HO-1 agonist, has good potential to be a promising candidate drug for the management of diabetes, and support a therapeutic role of HO-1 induction in diabetes that potentially paves the way to translational research.


Sujet(s)
Diabète , Hypoglycémie , Insulinorésistance , Animaux , Diabète/traitement médicamenteux , Glucose/métabolisme , Heme oxygenase-1/métabolisme , Hypoglycémie/traitement médicamenteux , Hypoglycémiants/pharmacologie , Hypoglycémiants/usage thérapeutique , Insulinorésistance/physiologie , Phosphatidylinositol 3-kinases , Rats
13.
Biomed Pharmacother ; 137: 111312, 2021 May.
Article de Anglais | MEDLINE | ID: mdl-33524788

RÉSUMÉ

Berberine (BBR) is a promising anti-diabetic isoquinoline alkaloid from Rhizoma coptidis, while its bioavailability was extremely low. Here, the existing form and pharmacokinetics of BBR were comparatively characterized in conventional and antibiotic-induced pseudo germ-free (PGF) rats. Furthermore, we comparatively investigated the antidiabetic effect and potential mechanism of BBR and its intestinal oxidative metabolite oxyberberine (OBB) in STZ-induced diabetic rats. Results showed that BBR and OBB existed mainly as protein-bound form in blood, while protein-bound OBB was significantly depleted in PGF rats. Treatment with OBB and BBR effectively decreased clinical symptoms of diabetic rats, reduced blood glucose level, ameliorated the pancreatic damage, and mitigated oxidative stress and inflammatory markers. However, the anti-diabetes effect of BBR was obviously compromised by antibiotics. In addition, OBB exerted superior anti-diabetes effect to BBR of the same dose, significantly up-regulated the mRNA expression of Nrf2 signaling pathway and substantially promoted the pancreatic levels of PI3K/Akt signaling pathway. In conclusion, BBR and its absorbed oxidative metabolite OBB were mainly presented and transported in the protein-bound form in vivo. The gut microbiota may play an important role in the anti-diabetes effect of BBR through transforming itself into the superior hypoglycemic metabolite OBB. OBB possessed favorable hypoglycemic and pancreatic ß-cells protective effects, which may stand a huge potential to be further developed into a promising anti-diabetes candidate.


Sujet(s)
Berbérine/analogues et dérivés , Berbérine/pharmacologie , Hypoglycémiants/pharmacologie , Facteur-2 apparenté à NF-E2/effets des médicaments et des substances chimiques , Protéine oncogène v-akt/effets des médicaments et des substances chimiques , Phosphatidylinositol 3-kinases/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques , Animaux , Anti-inflammatoires non stéroïdiens/pharmacologie , Glycémie/métabolisme , Diabète expérimental/traitement médicamenteux , Diabète expérimental/anatomopathologie , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Mâle , Simulation de docking moléculaire , Stress oxydatif/effets des médicaments et des substances chimiques , Pancréas/anatomopathologie , Rats , Rat Sprague-Dawley
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE