Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Int J Mol Sci ; 24(10)2023 May 18.
Article de Anglais | MEDLINE | ID: mdl-37240289

RÉSUMÉ

The aim of this work was to study the changes in the BVOCs emission rates and physiological mechanistic response of Pinus massoniana saplings in response to drought stress. Drought stress significantly reduced the emission rates of total BVOCs, monoterpenes, and sesquiterpenes, but had no significant effect on the emission rate of isoprene, which slightly increased under drought stress. A significant negative relationship was observed between the emission rates of total BVOCs, monoterpenes, and sesquiterpenes and the content of chlorophylls, starch, and NSCs, and a positive relationship was observed between the isoprene emission rate and the content of chlorophylls, starch, and NSCs, indicating different control mechanism over the emission of the different components of BVOCs. Under drought stress, the emission trade-off between isoprene and other BVOCs components may be driven by the content of chlorophylls, starch, and NSCs. Considering the inconsistent responses of the different components of BVOCs to drought stress for different plant species, close attention should be paid to the effect of drought stress and global change on plant BVOCs emissions in the future.


Sujet(s)
Pinus , Sesquiterpènes , Composés organiques volatils , Sécheresses , Amidon , Monoterpènes , Chlorophylle
2.
Front Plant Sci ; 13: 735359, 2022.
Article de Anglais | MEDLINE | ID: mdl-35197993

RÉSUMÉ

Plant fine-root decomposition is an important pathway for the reentry of nutrients into the soil. Studies have mainly focused on the loss of fine-root mass and the release characteristics of major elements, including, C, N, and P, but there are few reports on trace elements. In this study, in situ decomposition experiments were conducted to study the dynamic characteristics of mass loss and residual rates of 10 mineral elements in two diameter classes (<2 mm and 2-5 mm) of moso bamboo in the process of fine-root decomposition. The results of the year-long experiment reported herein showed that: (1) fine roots with diameters of less than 2 mm decomposed faster than those with diameters of 2-5 mm; (2) C, N, P, K, Ca, and Mg were released, whereas Fe, Mn, Zn, and Cu were enriched or changed little; (3) decomposition time and root diameter had significant effects on the remaining percentages of C, N, K, Ca, Mg, Mn, Zn, and Cu, and there were interactions among the elements (P < 0.05). The remaining percentages of P and Fe were only affected by decomposition time. This is the first comprehensive report on the variation in 10 elements during the fine-root decomposition of moso bamboo. The study expands our understanding of the release of mineral nutrients during fine-root decomposition, laying a solid theoretical foundation for further research on fine-root decomposition and plant-soil nutrient cycling.

3.
Environ Monit Assess ; 191(6): 355, 2019 May 08.
Article de Anglais | MEDLINE | ID: mdl-31069552

RÉSUMÉ

We estimated canopy structure and transmitted radiation using hemispherical photography in four monitoring years (2008-2010, 2016) following the 2008 huge ice storm in a subtropical forest in south China, so as to assess changes in canopy biophysical parameters during forest recovery from natural disturbance. Significant decrease in canopy openness (CO), transmitted direct radiation (TransDir), and transmitted diffuse radiation (TransDif), as well as significant increase in leaf area index (LAI), were found in the disturbed forest stand in the subsequent years following the ice storm, indicating rapid canopy recovery. In contrast, these biophysical parameters of the undisturbed forest stand were quite stable during the monitoring years. The strength of relationships between CO and other canopy biophysical parameters decreased in the disturbed stand along the monitoring years. The disturbed stand had common slopes for the CO-TransDir and CO-TransDif models in the first two monitoring years, but different slopes for the CO-LAI model between the first and the subsequent monitoring years, while the undisturbed stand had common slopes for all the regression models in the first three monitoring years following the huge ice storm. These results showed that stronger correlations of LAI or TransDir with CO were characteristic of less complex canopies, such as those damaged by disturbance; the sensitivity of transmitted radiation in response to CO decreased with canopy recovery. Our findings demonstrated that forests with different canopy structure varied in biophysical parameters, which can be quantified by hemispherical photography.


Sujet(s)
Surveillance de l'environnement/méthodes , Forêts , Glace , Chine , Photographie (méthode) , Feuilles de plante , Arbres
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE