Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 12 de 12
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Plant Physiol ; 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39041412

RÉSUMÉ

Arabidopsis (Arabidopsis thaliana) HISTONE DEACETYLASE 6 (HDA6) and HISTONE DEMETHYLASES LSD-LIKE 1 (LDL1) and LDL2 synergistically regulate the expression of long non-coding RNAs associated with H3Ac and H3K4me2. The underlying mechanisms of such highly coordinated interactions among genetic and epigenetic factors contributing to this collaborative regulation remain largely unclear. We analyzed all transposable elements (TEs) across the Arabidopsis genome and the individual and combined roles of HDA6 and LDL1/LDL2 by dissecting multi-layered epigenomes and their association with transcription. Instead of an individual synergistic effect, we observed dual synergistic and antagonistic effects, which are positively associated with H3Ac and H3K4me2 while maintaining a negative but moderate association with DNA methylation. Specifically, two modes of synergistic regulation were discovered in TEs: 74% are primarily regulated by HDA6, with less dependence on LDL1/LDL2, and the remaining 26% are co-regulated by both. Between the two modes, we showed that HDA6 has a strong effect on TE silencing, whereas LDL1/LDL2 plays a weaker yet crucial role in co-regulation with HDA6. Our results led to a model of epigenomic regulation - the differential de-repression between the two modes of synergistic regulation of TEs was determined by H3Ac and H3K4me2 levels, where TEs are in accessible chromatins free of DNA methylation, and this open chromatin environment precedes transcriptional changes and epigenome patterning. Our results discovered unbalanced effects of genetic factors in synergistic regulation through delicately coordinated multi-layered epigenomes and chromatin accessibility.

2.
Curr Opin Plant Biol ; 75: 102415, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-37437389

RÉSUMÉ

Plants possess remarkable abilities for regeneration, and this developmental capability is strongly influenced by environmental conditions. Previous research has highlighted the positive effects of wound signaling and warm temperature on plant regeneration, and recent studies suggest that light and nutrient signals also influence the regenerative efficiencies. Several epigenetic factors, such as histone acetyl-transferases (HATs), POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), and H2A variants, play crucial roles in regulating the expression of genes implicated in plant regeneration. However, how these epigenetic factors recognize specific genomic regions to regulate regeneration genes is still unclear. In this article, we describe the latest studies of epigenetic regulation and discuss the functional coordination between transcription factors and epigenetic modifiers in plant regeneration.


Sujet(s)
Épigenèse génétique , Épigénomique , Histone/métabolisme , Complexe répresseur Polycomb-2/génétique , Complexe répresseur Polycomb-2/métabolisme , Plantes/génétique , Plantes/métabolisme
3.
Commun Biol ; 6(1): 219, 2023 02 24.
Article de Anglais | MEDLINE | ID: mdl-36828846

RÉSUMÉ

The Arabidopsis H3K9 methyltransferases KRYPTONITE/SUPPRESSOR OF VARIEGATION 3-9 HOMOLOG 4 (KYP/SUVH4), SUVH5 and SUVH6 are redundantly involved in silencing of transposable elements (TEs). Our recent study indicated that KYP/SUVH5/6 can directly interact with the histone deacetylase HDA6 to synergistically regulate TE expression. However, the function of KYP/SUVH5/6 in plant development is still unclear. The transcriptional factors ASYMMETRIC LEAVES1 (AS1) and AS2 form a transcription complex, which is involved in leaf development by repressing the homeobox genes KNOTTED-LIKE FROM ARABIDOPSIS THALIANA 1 (KNAT1) and KNAT2. In this study, we found that KYP and SUVH5/6 directly interact with AS1-AS2 to repress KNAT1 and KNAT2 by altering histone H3 acetylation and H3K9 dimethylation levels. In addition, KYP can directly target the promoters of KNAT1 and KNAT2, and the binding of KYP depends on AS1. Furthermore, the genome-wide occupancy profile of KYP indicated that KYP is enriched in the promoter regions of coding genes, and the binding of KYP is positively correlated with that of AS1 and HDA6. Together, these results indicate that Arabidopsis H3K9 methyltransferases KYP/SUVH5/6 are involved in leaf development by interacting with AS1-AS2 to alter histone H3 acetylation and H3K9 dimethylation from KNAT1 and KNAT2 loci.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Arabidopsis/génétique , Methyltransferases/métabolisme , Histone/métabolisme , Lysine/métabolisme , Feuilles de plante , Protéines à homéodomaine/génétique , Protéines d'Arabidopsis/métabolisme , Histone deacetylases/métabolisme
4.
Plant Physiol ; 190(1): 532-547, 2022 08 29.
Article de Anglais | MEDLINE | ID: mdl-35708655

RÉSUMÉ

Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS C (FLC) acts as a key flowering regulator by repressing the expression of the floral integrator FLOWERING LOCUS T (FT). Prolonged exposure to cold (vernalization) induces flowering by reducing FLC expression. The long noncoding RNAs (lncRNAs) COOLAIR and COLDAIR, which are transcribed from the 3' end and the first intron of FLC, respectively, are important for FLC repression under vernalization. However, the molecular mechanism of how COOLAIR and COLDAIR are transcriptionally activated remains elusive. In this study, we found that the group-III WRKY transcription factor WRKY63 can directly activate FLC. wrky63 mutant plants display an early flowering phenotype and are insensitive to vernalization. Interestingly, we found that WRKY63 can activate the expression of COOLAIR and COLDAIR by binding to their promoters.WRKY63 therefore acts as a dual regulator that activates FLC directly under non-vernalization conditions but represses FLC indirectly during vernalization through inducing COOLAIR and COLDAIR. Furthermore, genome-wide occupancy profile analyses indicated that the binding of WRKY63 to vernalization-induced genes increases after vernalization. In addition, WRKY63 binding is associated with decreased levels of the repressive marker Histone H3 Lysine 27 trimethylation (H3K27me3). Collectively, our results indicate that WRKY63 is an important flowering regulator involved in vernalization-induced transcriptional regulation.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Basse température , Fleurs/physiologie , Régulation de l'expression des gènes végétaux , Protéines à domaine MADS/génétique , Protéines à domaine MADS/métabolisme , Activation de la transcription/génétique
5.
Plant J ; 109(4): 831-843, 2022 02.
Article de Anglais | MEDLINE | ID: mdl-34807487

RÉSUMÉ

MULTICOPY SUPPRESSOR OF IRA1 (MSI1) is a conserved subunit of Polycomb Repressive Complex 2 (PRC2), which mediates gene silencing by histone H3 lysine 27 trimethylation (H3K27Me3). Here, we demonstrated that MSI1 interacts with the RPD3-like histone deacetylase HDA6 both in vitro and in vivo. MSI1 and HDA6 are involved in flowering and repress the expression of FLC, MAF4, and MAF5 by removing H3K9 acetylation but adding H3K27Me3. Chromatin immunoprecipitation analysis showed that HDA6 and MSI1 interdependently bind to the chromatin of FLC, MAF4, and MAF5. Furthermore, H3K9 deacetylation mediated by HDA6 is dependent on MSI1, while H3K27Me3 mediated by PRC2 containing MSI1 is also dependent on HDA6. Taken together, these data indicate that MSI1 and HDA6 act interdependently to repress the expression of FLC, MAF4, and MAF5 through histone modifications. Our findings reveal that the HDA6-MSI1 module mediates the interaction between histone H3 deacetylation and H3K27Me3 to repress gene expression involved in flowering time control.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/métabolisme , Chromatine/métabolisme , Fleurs/métabolisme , Histone deacetylases/métabolisme , Acétylation , Arabidopsis/génétique , Protéines d'Arabidopsis/génétique , Immunoprécipitation de la chromatine , Fleurs/génétique , Régulation de l'expression des gènes végétaux , Extinction de l'expression des gènes , Histone deacetylases/génétique , Histone/métabolisme , Protéines à domaine MADS/métabolisme , Complexe répresseur Polycomb-2/génétique , Complexe répresseur Polycomb-2/métabolisme , Protéines de répression/métabolisme
6.
J Exp Bot ; 73(3): 835-847, 2022 01 27.
Article de Anglais | MEDLINE | ID: mdl-34545936

RÉSUMÉ

BRAHMA (BRM) is the ATPase of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodelling complex, which is indispensable for transcriptional inhibition and activation, associated with vegetative and reproductive development in Arabidopsis thaliana. Here, we show that BRM directly binds to the chromatin of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), which integrates multiple flowering signals to regulate floral transition, leading to flowering. In addition, genetic and molecular analysis showed that BRM interacts with GNC (GATA, NITRATE-INDUCIBLE, CARBON METABOLISM INVOLVED), a GATA transcription factor that represses flowering by directly repressing SOC1 expression. Furthermore, BRM is recruited by GNC to directly bind to the chromatin of SOC1. The transcript level of SOC1 is elevated in brm-3, gnc, and brm-3/gnc mutants, which is associated with increased histone H3 lysine 4 tri-methylation (H3K4Me3) but decreased DNA methylation. Taken together, our results indicate that BRM associates with GNC to regulate SOC1 expression and flowering time.


Sujet(s)
Adenosine triphosphatases , Protéines d'Arabidopsis , Arabidopsis , Assemblage et désassemblage de la chromatine , Facteurs de transcription , Adenosine triphosphatases/génétique , Adenosine triphosphatases/métabolisme , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Facteurs de transcription GATA/génétique , Facteurs de transcription GATA/métabolisme , Régulation de l'expression des gènes végétaux , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
7.
Plant Cell ; 33(4): 1196-1211, 2021 05 31.
Article de Anglais | MEDLINE | ID: mdl-33604650

RÉSUMÉ

Arabidopsis thaliana CONSTANS (CO) is an essential transcription factor that promotes flowering by activating the expression of the floral integrator FLOWERING LOCUS T (FT). A number of histone modification enzymes involved in the regulation of flowering have been identified, but the involvement of epigenetic mechanisms in the regulation of the core flowering regulator CO remains unclear. Previous studies have indicated that the transcription factors, FLOWERING BHLH1 (FBH1), FBH2, FBH3, and FBH4, function redundantly to activate the expression of CO. In this study, we found that the KDM3 group H3K9 demethylase JMJ28 interacts with the FBH transcription factors to activate CO by removing the repressive mark H3K9me2. The occupancy of JMJ28 on the CO locus is decreased in the fbh quadruple mutant, suggesting that the binding of JMJ28 is dependent on FBHs. Furthermore, genome-wide occupancy profile analyses indicate that the binding of JMJ28 to the genome overlaps with that of FBH3, indicating a functional association of JMJ28 and FBH3. Together, these results indicate that Arabidopsis JMJ28 functions as a CO activator by interacting with the FBH transcription factors to remove H3K9me2 from the CO locus.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/physiologie , Protéines de liaison à l'ADN/métabolisme , Fleurs/physiologie , Histone Demethylases/métabolisme , Facteurs de transcription/métabolisme , Arabidopsis/génétique , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Protéines de liaison à l'ADN/génétique , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes végétaux , Génome végétal , Histone Demethylases/génétique , Histone/métabolisme , Lysine/métabolisme , Végétaux génétiquement modifiés/génétique , Facteurs de transcription/génétique
8.
Genome Res ; 30(10): 1407-1417, 2020 10.
Article de Anglais | MEDLINE | ID: mdl-32759225

RÉSUMÉ

Eukaryotic histone deacetylation, critical for maintaining nucleosome structure and regulating gene expression, is mediated by histone deacetylases (HDACs). Although nucleosomes have been reported to regulate mRNA polyadenylation in humans, the role of HDACs in regulating polyadenylation has not been uncovered. Taking advantage of phenotypic studies on Arabidopsis, HDA6 (one of HDACs) was found to be a critical part of many biological processes. Here, we report that HDA6 affects mRNA polyadenylation in Arabidopsis Poly(A) sites of up-regulated transcripts are closer to the histone acetylation peaks in hda6 compared to the wild-type Col-0. HDA6 is required for the deacetylation of histones around DNA on nucleosomes, which solely coincides with up-regulated or uniquely presented poly(A) sites in hda6 Furthermore, defective HDA6 results in an overrepresentation of the canonical poly(A) signal (AAUAAA) usage. Chromatin loci for generating AAUAAA-type transcripts have a comparatively low H3K9K14ac around poly(A) sites when compared to other noncanonical poly(A) signal-containing transcripts. These results indicate that HDA6 regulates polyadenylation in a histone deacetylation-dependent manner in Arabidopsis.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/génétique , Histone deacetylases/métabolisme , Histone/métabolisme , Polyadénylation , Régions 3' non traduites , Acétylation , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Histone acetyltransferases/antagonistes et inhibiteurs , Histone deacetylases/génétique , Mutation , ARN messager/composition chimique
9.
Plant J ; 103(5): 1735-1743, 2020 08.
Article de Anglais | MEDLINE | ID: mdl-32445267

RÉSUMÉ

Plant trichomes are large single cells that are organized in a regular pattern and play multiple biological functions. In Arabidopsis, trichome development is mainly governed by the core trichome initiation regulators, including the R2R3 type MYB transcript factor GLABRA 1 (GL1), bHLH transcript factors GLABRA 3/ENHANCER OF GLABRA 3 (GL3/EGL3), and the WD-40 repeat protein TRANSPARENT TESTA GLABRA 1 (TTG1), as well as the downstream trichome regulator GLABRA 2 (GL2). GL1, GL3/EGL3, and TTG1 can form a trimeric activation complex to activate GL2, which is required for the trichome initiation and maintenance during cell differentiation. Arabidopsis JMJ29 is a JmjC domain-containing histone demethylase belonging to the JHDM2/KDM3 group. Members of the JHDM2/KDM3 group histone demethylases are mainly responsible for the H3K9me1/2 demethylation. In the present study, we found that the trichome density on leaves and inflorescence stems is significantly decreased in jmj29 mutants. The expression of the core trichome regulators GL1, GL2, and GL3 is decreased in jmj29 mutants as well. Furthermore, JMJ29 can directly target GL3 and remove H3K9me2 on the GL3 locus. Collectively, we found that Arabidopsis JMJ29 is involved in trichome development by directly regulating GL3 expression. These results provide further insights into the molecular mechanism of epigenetic regulation in Arabidopsis trichome development.


Sujet(s)
Protéines d'Arabidopsis/physiologie , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Facteurs généraux de transcription/physiologie , Trichomes/génétique , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Régulation de l'expression des gènes végétaux , Gènes de plante , Facteurs généraux de transcription/génétique , Facteurs généraux de transcription/métabolisme , Trichomes/métabolisme
10.
NAR Genom Bioinform ; 2(3): lqaa066, 2020 Sep.
Article de Anglais | MEDLINE | ID: mdl-33575615

RÉSUMÉ

In recent years, eukaryotic long non-coding RNAs (lncRNAs) have been identified as important factors involved in a wide variety of biological processes, including histone modification, alternative splicing and transcription enhancement. The expression of lncRNAs is highly tissue-specific and is regulated by environmental stresses. Recently, a large number of plant lncRNAs have been identified, but very few of them have been studied in detail. Furthermore, the mechanism of lncRNA expression regulation remains largely unknown. Arabidopsis HISTONE DEACETYLASE 6 (HDA6) and LSD1-LIKE 1/2 (LDL1/2) can repress gene expression synergistically by regulating H3Ac/H3K4me. In this research, we performed RNA-seq and ChIP-seq analyses to further clarify the function of HDA6-LDL1/2. Our results indicated that the global expression of lncRNAs is increased in hda6/ldl1/2 and that this increased lncRNA expression is particularly associated with H3Ac/H3K4me2 changes. In addition, we found that HDA6-LDL1/2 is important for repressing lncRNAs that are non-expressed or show low-expression, which may be strongly associated with plant development. GO-enrichment analysis also revealed that the neighboring genes of the lncRNAs that are upregulated in hda6/ldl1/2 are associated with various developmental processes. Collectively, our results revealed that the expression of lncRNAs is associated with H3Ac/H3K4me2 changes regulated by the HDA6-LDL1/2 histone modification complex.

11.
Front Plant Sci ; 10: 233, 2019.
Article de Anglais | MEDLINE | ID: mdl-30863422

RÉSUMÉ

In Arabidopsis, the circadian rhythm is associated with multiple important biological processes and maintained by multiple interconnected loops that generate robust rhythms. The circadian clock central loop is a negative feedback loop composed of the core circadian clock components. TOC1 (TIMING OF CAB EXPRESSION 1) is highly expressed in the evening and negatively regulates the expression of CCA1 (CIRCADIAN CLOCK ASSOCIATED 1)/LHY (LATE ELONGATED HYPOCOTYL). CCA1/LHY also binds to the promoter of TOC1 and represses the TOC1 expression. Our recent research revealed that the histone modification complex comprising of LYSINE-SPECIFIC DEMETHYLASE 1 (LSD1)-LIKE 1/2 (LDL1/2) and HISTONE DEACETYLASE 6 (HDA6) can be recruited by CCA1/LHY to repress TOC1 expression. In this study, we found that HDA6, LDL1, and LDL2 can interact with TOC1, and the LDL1/2-HDA6 complex is associate with TOC1 to repress the CCA1/LHY expression. Furthermore, LDL1/2-HDA6 and TOC1 co-target a subset of genes involved in the circadian rhythm. Collectively, our results indicate that the LDL1/2-HDA6 histone modification complex is important for the regulation of the core circadian clock components.

12.
Nucleic Acids Res ; 46(20): 10669-10681, 2018 11 16.
Article de Anglais | MEDLINE | ID: mdl-30124938

RÉSUMÉ

In Arabidopsis, the circadian clock central oscillator genes are important cellular components to generate and maintain circadian rhythms. There is a negative feedback loop between the morning expressed CCA1 (CIRCADIAN CLOCK ASSOCIATED 1)/LHY (LATE ELONGATED HYPOCOTYL) and evening expressed TOC1 (TIMING OF CAB EXPRESSION 1). CCA1 and LHY negatively regulate the expression of TOC1, while TOC1 also binds to the promoters of CCA1 and LHY to repress their expression. Recent studies indicate that histone modifications play an important role in the regulation of the central oscillators. However, the regulatory relationship between histone modifications and the circadian clock genes remains largely unclear. In this study, we found that the Lysine-Specific Demethylase 1 (LSD1)-like histone demethylases, LDL1 and LDL2, can interact with CCA1/LHY to repress the expression of TOC1. ChIP-Seq analysis indicated that LDL1 targets a subset of genes involved in the circadian rhythm regulated by CCA1. Furthermore, LDL1 and LDL2 interact with the histone deacetylase HDA6 and co-regulate TOC1 by histone demetylation and deacetylaion. These results provide new insight into the molecular mechanism of how the circadian clock central oscillator genes are regulated through histone modifications.


Sujet(s)
Protéines d'Arabidopsis/génétique , Horloges circadiennes/génétique , Protéines de liaison à l'ADN/génétique , Régulation de l'expression des gènes végétaux , Histone deacetylases/génétique , Histone Demethylases/génétique , Facteurs de transcription/génétique , Arabidopsis/génétique , Arabidopsis/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines de liaison à l'ADN/métabolisme , Analyse de profil d'expression de gènes , Code histone/génétique , Histone deacetylases/métabolisme , Histone Demethylases/métabolisme , Complexes multiprotéiques/génétique , Complexes multiprotéiques/métabolisme , Liaison aux protéines , Facteurs de transcription/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE