Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Life Sci ; 235: 116841, 2019 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-31494173

RÉSUMÉ

Indanyloxyacetic acid-94 (IAA-94), an intracellular chloride channel blocker, is shown to ablate cardioprotection rendered by ischemic preconditioning (IPC), N (6)-2-(4-aminophenyl) ethyladenosine or the PKC activator phorbol 12-myristate 13-acetate and cyclosporin A (CsA) in both ex-vivo and in-vivo ischemia-reperfusion (IR) injury. Thus signifying the role of the IAA-94 sensitive chloride channels in mediating cardio-protection upon IR injury. Although IAA-94 sensitive chloride currents are recorded in cardiac mitoplast, there is still a lack of understanding of the mechanism by which IAA-94 increases myocardial infarction (MI) by IR injury. Mitochondria are the key arbitrators of cell life and death pathways. Both oxidative stress and calcium overload in the mitochondria, elicit pathways resulting in the opening of mitochondrial permeability transition pore (mPTP) leading to cell death. Therefore, in this study we explored the role of IAA-94 in MI and in maintaining calcium retention capacity (CRC) of cardiac mitochondria after IR. IAA-94 inhibited the CRC of the isolated cardiac mitochondria in a concentration-dependent manner as measured spectrofluorimetrically using calcium green-5 N. Interestingly, IAA-94 did not change the mitochondrial membrane potential. Further, CsA a blocker of mPTP opening could not override the effect of IAA-94. We also showed for the first time that IAA-94 perfusion after ischemic event augments MI by reducing the CRC of mitochondria. To conclude, our results demonstrate that the mechanism of IAA-94 mediated cardio-deleterious effects is via modulating the mitochondria CRC, thereby playing a role in mPTP opening. These findings highlight new pharmacological targets, which can mediate cardioprotection from IR injury.


Sujet(s)
Calcium/métabolisme , Glycolates/effets indésirables , Infarctus du myocarde/métabolisme , Animaux , Ciclosporine/pharmacologie , Relation dose-effet des médicaments , Glycolates/antagonistes et inhibiteurs , Mâle , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Mitochondries du myocarde/métabolisme , Infarctus du myocarde/induit chimiquement , Rats
2.
Data Brief ; 7: 1038-44, 2016 Jun.
Article de Anglais | MEDLINE | ID: mdl-27104215

RÉSUMÉ

Chloride intracellular channel (CLICs) proteins show 60-70% sequence identity to each other, and exclusively localize to the intracellular organelle membranes and cytosol. In support of our recent publication, "Molecular identity of cardiac mitochondrial chloride intracellular channel proteins" (Ponnalagu et al., 2016) [1], it was important to characterize the specificity of different CLIC paralogs/ortholog (CLIC1, CLIC4, CLIC5 and DmCLIC) antibodies used to decipher their localization in cardiac cells. In addition, localization of CLICs in the other organelles such as endoplasmic reticulum (ER) of cardiomyocytes was established. This article also provides data on the different primers used to show the relative abundance of CLIC paralogs in cardiac tissue and the specificity of the various CLIC antibodies used. We demonstrate that the predominant CLICs in the heart, namely CLIC1, CLIC4 and CLIC5, show differential distribution in endoplasmic reticulum. CLIC1 and CLIC4 both show co-localization to the endoplasmic reticulum whereas CLIC5 does not.

3.
Mitochondrion ; 27: 6-14, 2016 Mar.
Article de Anglais | MEDLINE | ID: mdl-26777142

RÉSUMÉ

Emerging evidences demonstrate significance of chloride channels in cardiac function and cardioprotection from ischemia-reperfusion (IR) injury. Unlike mitochondrial potassium channels sensitive to calcium (BKCa) and ATP (KATP), molecular identity of majority of cardiac mitochondrial chloride channels located at the inner membrane is not known. In this study, we report the presence of unique dimorphic chloride intracellular channel (CLIC) proteins namely CLIC1, CLIC4 and CLIC5 as abundant CLICs in the rodent heart. Further, CLIC4, CLIC5, and an ortholog present in Drosophila (DmCLIC) localize to adult cardiac mitochondria. We found that CLIC4 is enriched in the outer mitochondrial membrane, whereas CLIC5 is present in the inner mitochondrial membrane. Also, CLIC5 plays a direct role in regulating mitochondrial reactive oxygen species (ROS) generation. Our study highlights that CLIC5 is localized to the cardiac mitochondria and directly modulates mitochondrial function.


Sujet(s)
Canaux chlorure/analyse , Chlorures/métabolisme , Mitochondries du myocarde/enzymologie , Myocytes cardiaques/métabolisme , Animaux , Drosophila , Souris de lignée C3H , Mitochondries du myocarde/métabolisme , Rat Sprague-Dawley , Espèces réactives de l'oxygène/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE