Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cell Death Dis ; 15(6): 418, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38879508

RÉSUMÉ

Tamoxifen has been the mainstay therapy to treat early, locally advanced, and metastatic estrogen receptor-positive (ER + ) breast cancer, constituting around 75% of all cases. However, the emergence of resistance is common, necessitating the identification of novel therapeutic targets. Here, we demonstrated that long-noncoding RNA LINC00152 confers tamoxifen resistance by blocking tamoxifen-induced ferroptosis, an iron-mediated cell death. Mechanistically, inhibiting LINC00152 reduces the mRNA stability of phosphodiesterase 4D (PDE4D), leading to activation of the cAMP/PKA/CREB axis and increased expression of the TRPC1 Ca2+ channel. This causes cytosolic Ca2+ overload and generation of reactive oxygen species (ROS) that is, on the one hand, accompanied by downregulation of FTH1, a member of the iron sequestration unit, thus increasing intracellular Fe2+ levels; and on the other hand, inhibition of the peroxidase activity upon reduced GPX4 and xCT levels, in part by cAMP/CREB. These ultimately restore tamoxifen-dependent lipid peroxidation and ferroptotic cell death which are reversed upon chelating Ca2+ or overexpressing GPX4 or xCT. Overexpressing PDE4D reverses LINC00152 inhibition-mediated tamoxifen sensitization by de-activating the cAMP/Ca2+/ferroptosis axis. Importantly, high LINC00152 expression is significantly correlated with high PDE4D/low ferroptosis and worse survival in multiple cohorts of tamoxifen- or tamoxifen-containing endocrine therapy-treated ER+ breast cancer patients. Overall, we identified LINC00152 inhibition as a novel mechanism of tamoxifen sensitization via restoring tamoxifen-dependent ferroptosis upon destabilizing PDE4D, increasing cAMP and Ca2+ levels, thus leading to ROS generation and lipid peroxidation. Our findings reveal LINC00152 and its effectors as actionable therapeutic targets to improve clinical outcome in refractory ER+ breast cancer.


Sujet(s)
Tumeurs du sein , Calcium , AMP cyclique , Résistance aux médicaments antinéoplasiques , Ferroptose , ARN long non codant , Tamoxifène , Humains , Tamoxifène/pharmacologie , Tamoxifène/usage thérapeutique , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/génétique , Tumeurs du sein/métabolisme , Tumeurs du sein/anatomopathologie , Ferroptose/effets des médicaments et des substances chimiques , Ferroptose/génétique , Femelle , ARN long non codant/métabolisme , ARN long non codant/génétique , AMP cyclique/métabolisme , Calcium/métabolisme , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques/génétique , Lignée cellulaire tumorale , Animaux , Récepteurs des oestrogènes/métabolisme , Souris , Espèces réactives de l'oxygène/métabolisme , Cellules MCF-7
2.
FEBS Open Bio ; 13(3): 556-569, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36723232

RÉSUMÉ

Evaluation of gene co-regulation is a powerful approach for revealing regulatory associations between genes and predicting biological function, especially in genetically diverse samples. Here, we applied this strategy to identify transcripts that are co-regulated with unfolded protein response (UPR) genes in cultured fibroblasts from outbred deer mice. Our analyses showed that the transcriptome associated with RASSF1, a tumor suppressor involved in cell cycle regulation and not previously linked to UPR, is highly correlated with the transcriptome of several UPR-related genes, such as BiP/GRP78, DNAJB9, GRP94, ATF4, DNAJC3, and CHOP/DDIT3. Conversely, gene ontology analyses for genes co-regulated with RASSF1 predicted a previously unreported involvement in UPR-associated apoptosis. Bioinformatic analyses indicated the presence of ATF4-binding sites in the RASSF1 promoter, which were shown to be operational using chromatin immunoprecipitation. Reporter assays revealed that the RASSF1 promoter is responsive to ATF4, while ablation of RASSF1 mitigated the expression of the ATF4 effector BBC3 and abrogated tunicamycin-induced apoptosis. Collectively, these results implicate RASSF1 in the regulation of endoplasmic reticulum stress-associated apoptosis downstream of ATF4. They also illustrate the power of gene coordination analysis in predicting biological functions and revealing regulatory associations between genes.


Sujet(s)
Facteur de transcription ATF-4 , Stress du réticulum endoplasmique , Protéines suppresseurs de tumeurs , Réponse aux protéines mal repliées , Protéines du cycle cellulaire/génétique , Chaperonne BiP du réticulum endoplasmique , Stress du réticulum endoplasmique/génétique , Régulation de l'expression des gènes , Transcriptome/génétique , Réponse aux protéines mal repliées/génétique , Facteur de transcription ATF-4/métabolisme , Protéines suppresseurs de tumeurs/métabolisme
3.
bioRxiv ; 2023 Nov 05.
Article de Anglais | MEDLINE | ID: mdl-38496603

RÉSUMÉ

Tamoxifen has been the mainstay therapy to treat early, locally advanced, and metastatic estrogen receptor-positive (ER+) breast cancer, constituting around 75% of all cases. However, emergence of resistance is common, necessitating the identification of novel therapeutic targets. Here, we demonstrated that long-noncoding RNA LINC00152 confers tamoxifen resistance via blocking tamoxifen-induced ferroptosis, an iron-mediated cell death. Mechanistically, inhibiting LINC00152 reduces the mRNA stability of phosphodiesterase 4D (PDE4D), leading to activation of cAMP/PKA/CREB axis and increased expression of TRPC1 Ca2+ channel. This causes cytosolic Ca2+ overload and generation of reactive oxygen species (ROS) that is, on one hand, accompanied by downregulation of FTH1, a member of the iron sequestration unit, thus increasing intracellular Fe2+ levels; and on the other hand, inhibition of the peroxidase activity upon reduced GPX4 and xCT levels. These ultimately induce lipid peroxidation and ferroptotic cell death in combination with tamoxifen. Overexpressing PDE4D rescues LINC00152 inhibition-mediated tamoxifen sensitization by de-activating the cAMP/Ca2+/ferroptosis axis. Importantly, high LINC00152 expression is significantly correlated with high PDE4D/low ferroptosis and worse survival in multiple cohorts of tamoxifen- or tamoxifen-containing endocrine therapy-treated ER+ breast cancer patients. Overall, we identified LINC00152 inhibition as a novel mechanism of ferroptosis induction and tamoxifen sensitization, thereby revealing LINC00152 and its effectors as actionable therapeutic targets to improve clinical outcome in refractory ER+ breast cancer.

4.
J Mol Med (Berl) ; 99(12): 1691-1710, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34623477

RÉSUMÉ

Estrogen receptor-positive (ER +) breast cancer accounts for approximately 75% of all breast cancers. Endocrine therapies, including selective ER modulators (SERMs), aromatase inhibitors (AIs), and selective ER down-regulators (SERDs) provide substantial clinical benefit by reducing the risk of disease recurrence and mortality. However, resistance to endocrine therapies represents a major challenge, limiting the success of ER + breast cancer treatment. Mechanisms of endocrine resistance involve alterations in ER signaling via modulation of ER (e.g., ER downregulation, ESR1 mutations or fusions); alterations in ER coactivators/corepressors, transcription factors (TFs), nuclear receptors and epigenetic modulators; regulation of signaling pathways; modulation of cell cycle regulators; stress signaling; and alterations in tumor microenvironment, nutrient stress, and metabolic regulation. Current therapeutic strategies to improve outcome of endocrine-resistant patients in clinics include inhibitors against mechanistic target of rapamycin (mTOR), cyclin-dependent kinase (CDK) 4/6, and the phosphoinositide 3-kinase (PI3K) subunit, p110α. Preclinical studies reveal novel therapeutic targets, some of which are currently tested in clinical trials as single agents or in combination with endocrine therapies, such as ER partial agonists, ER proteolysis targeting chimeras (PROTACs), next-generation SERDs, AKT inhibitors, epidermal growth factor receptor 1 and 2 (EGFR/HER2) dual inhibitors, HER2 targeting antibody-drug conjugates (ADCs) and histone deacetylase (HDAC) inhibitors. In this review, we summarize the established and emerging mechanisms of endocrine resistance, alterations during metastatic recurrence, and discuss the approved therapies and ongoing clinical trials testing the combination of novel targeted therapies with endocrine therapy in endocrine-resistant ER + breast cancer patients.


Sujet(s)
Antinéoplasiques/usage thérapeutique , Inhibiteurs de l'aromatase/usage thérapeutique , Tumeurs du sein/traitement médicamenteux , Résistance aux médicaments antinéoplasiques , Modulateurs des récepteurs des oestrogènes/usage thérapeutique , Animaux , Tumeurs du sein/génétique , Tumeurs du sein/métabolisme , Tumeurs du sein/anatomopathologie , Résistance aux médicaments antinéoplasiques/génétique , Femelle , Humains , Récidive tumorale locale/génétique , Récepteurs des oestrogènes/génétique , Récepteurs des oestrogènes/métabolisme
5.
Cancer Sci ; 110(7): 2237-2246, 2019 Jul.
Article de Anglais | MEDLINE | ID: mdl-31127873

RÉSUMÉ

Glycoprotein NMB (GPNMB) is highly expressed in many types of malignant tumors and thought to be a poor prognostic factor in those cancers, including breast cancer. Glycoprotein NMB is a type IA transmembrane protein that has a long extracellular domain (ECD) and a short intracellular domain (ICD). In general, the ECD of a protein is involved in protein-protein or protein-carbohydrate interactions, whereas the ICD is important for intracellular signaling. We previously reported that GPNMB contributes to the initiation and malignant progression of breast cancer through the hemi-immunoreceptor tyrosine-based activation motif (hemITAM) in its ICD. Furthermore, we showed that the tyrosine residue in hemITAM is involved in induction of the stem-like properties of breast cancer cells. However, the contribution of the ECD to its tumorigenic function has yet to be fully elucidated. In this study, we focused on the region, the so-called kringle-like domain (KLD), that is conserved among species, and made a deletion mutant, GPNMB(ΔKLD). Enhanced expression of WT GPNMB induced sphere and tumor formation in breast epithelial cells; in contrast, GPNMB(ΔKLD) lacked these activities without affecting its molecular properties, such as subcellular localization, Src-induced tyrosine phosphorylation at least in overexpression experiments, and homo-oligomerization. Additionally, GPNMB(ΔKLD) lost its cell migration promoting activity, even though it reduced E-cadherin expression. Although the interaction partner binding to KLD has not yet been identified, we found that the KLD of GPNMB plays an important role in its tumorigenic potential.


Sujet(s)
Tumeurs du sein/anatomopathologie , Glycoprotéines membranaires/composition chimique , Glycoprotéines membranaires/métabolisme , Mutation , Séquence d'acides aminés , Animaux , Antigènes CD/métabolisme , Tumeurs du sein/génétique , Tumeurs du sein/métabolisme , Cadhérines/métabolisme , Lignée cellulaire tumorale , Mouvement cellulaire , Séquence conservée , Femelle , Régulation de l'expression des gènes tumoraux , Humains , Kringles , Glycoprotéines membranaires/génétique , Souris , Transplantation tumorale
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...