Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Environ Radioact ; 182: 174-176, 2018 02.
Article de Anglais | MEDLINE | ID: mdl-29203328

RÉSUMÉ

Elements to answer the points raised in the Letter in question are proposed, notably about exposure metrics and their influence on the results and statistical power of epidemiological studies.


Sujet(s)
Exposition environnementale , Rayons gamma , France , Humains
2.
Radiat Prot Dosimetry ; 177(1-2): 69-77, 2017 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-29036475

RÉSUMÉ

Exposure to radon is a well-established cause of lung cancer in the general population. The aim of the present work is to identify and summarize the results of studies that have assessed the risk of lung cancer due to indoor radon, based on a systematic review of relevant published studies. Sixteen studies from 12 different countries met eligibility criteria. Large differences in radon concentrations were noted between and within individual countries, and variety of risk models used to estimate the attributable fraction. Calculating again the attributable fraction in each of these studies using the same model (coefficient of 16% per 100 becquerels per cubic meter (Bq/m3) derived from the European residential radon study), the new attributable fraction of these selected studies ranged from 3% to 17%. Radon remains a public health concern. Information about radon health risks is important and efforts are needed to decrease the associated health problems.


Sujet(s)
Polluants atmosphériques radioactifs/analyse , Pollution de l'air intérieur/analyse , Exposition environnementale/effets indésirables , Tumeurs du poumon/étiologie , Tumeurs radio-induites/étiologie , Radon/analyse , Appréciation des risques , Exposition environnementale/analyse , Logement , Humains , Facteurs de risque
3.
J Environ Radioact ; 166(Pt 2): 210-219, 2017 Jan.
Article de Anglais | MEDLINE | ID: mdl-27266726

RÉSUMÉ

In France, natural radiation accounts for most of the population exposure to ionizing radiation. The Institute for Radiological Protection and Nuclear Safety (IRSN) carries out studies to evaluate the variability of natural radioactivity over the French territory. In this framework, the present study consisted in the evaluation of uranium concentrations in bedrocks. The objective was to provide estimate of uranium content of each geological unit defined in the geological map of France (1:1,000,000). The methodology was based on the interpretation of existing geochemical data (results of whole rock sample analysis) and the knowledge of petrology and lithology of the geological units, which allowed obtaining a first estimate of the uranium content of rocks. Then, this first estimate was improved thanks to some additional information. For example, some particular or regional sedimentary rocks which could present uranium contents higher than those generally observed for these lithologies, were identified. Moreover, databases on mining provided information on the location of uranium and coal/lignite mines and thus indicated the location of particular uranium-rich rocks. The geological units, defined from their boundaries extracted from the geological map of France (1:1,000,000), were finally classified into 5 categories based on their mean uranium content. The map obtained provided useful data for establishing the geogenic radon map of France, but also for mapping countrywide exposure to terrestrial radiation and for the evaluation of background levels of natural radioactivity used for impact assessment of anthropogenic activities.


Sujet(s)
Sédiments géologiques/composition chimique , Contrôle des radiations , Polluants radioactifs/analyse , Uranium/analyse , France
4.
J Environ Radioact ; 139: 140-148, 2015 Jan.
Article de Anglais | MEDLINE | ID: mdl-25464050

RÉSUMÉ

Terrestrial gamma dose rates show important spatial variations in France. Previous studies resulted in maps of arithmetic means of indoor terrestrial gamma dose rates by "departement" (French district). However, numerous areas could not be characterized due to the lack of data. The aim of our work was to obtain more precise estimates of the spatial variability of indoor terrestrial gamma dose rates in France by using a more recent and complete data base and geostatistics. The study was based on the exploitation of 97,595 measurements results distributed in 17,404 locations covering all of France. Measurements were done by the Institute for Radioprotection and Nuclear Safety (IRSN) using RPL (Radio Photo Luminescent) dosimeters, exposed during several months between years 2011 and 2012 in French dentist surgeries and veterinary clinics. The data used came from dosimeters which were not exposed to anthropic sources. After removing the cosmic rays contribution in order to study only the telluric gamma radiation, it was decided to work with the arithmetic means of the time-series measurements, weighted by the time-exposure of the dosimeters, for each location. The values varied between 13 and 349 nSv/h, with an arithmetic mean of 76 nSv/h. The observed statistical distribution of the gamma dose rates was skewed to the right. Firstly, ordinary kriging was performed in order to predict the gamma dose rate on cells of 1*1 km(2), all over the domain. The second step of the study was to use an auxiliary variable in estimates. The IRSN achieved in 2010 a classification of the French geological formations, characterizing their uranium potential on the bases of geology and local measurement results of rocks uranium content. This information is georeferenced in a map at the scale 1:1,000,000. The geological uranium potential (GUP) was classified in 5 qualitative categories. As telluric gamma rays mostly come from the progenies of the (238)Uranium series present in rocks, this information, which is exhaustive throughout France, could help in estimating the telluric gamma dose rates. Such an approach is possible using multivariate geostatistics and cokriging. Multi-collocated cokriging has been performed on 1*1 km(2) cells over the domain. This model used gamma dose rate measurement results and GUP classes. Our results provide useful information on the variability of the natural terrestrial gamma radiation in France ('natural background') and exposure data for epidemiological studies and risk assessment from low dose chronic exposures.


Sujet(s)
Rayons gamma , Contrôle des radiations/méthodes , France
5.
J Environ Radioact ; 126: 216-25, 2013 Dec.
Article de Anglais | MEDLINE | ID: mdl-24056050

RÉSUMÉ

Radon-222 is a radioactive natural gas produced by the decay of radium-226, known to be the main contributor to natural background radiation exposure. Effective risk management needs to determine the areas in which the density of buildings with high radon levels is likely to be highest. Predicting radon exposure from the location and characteristics of a dwelling could also contribute to epidemiological studies. Beginning in the nineteen-eighties, a national radon survey consisting in more than 10,000 measurements of indoor radon concentrations was conducted in French dwellings by the Institute for Radiological Protection and Nuclear Safety (IRSN). Housing characteristics, which may influence radon accumulation in dwellings, were also collected. More recently, the IRSN generated a French geogenic radon potential map based on the interpretation of geological features. The present study analyzed the two datasets to investigate the factors influencing indoor radon concentrations using statistical modeling and to determine the optimum use of the information on geogenic radon potential that showed the best statistical association with indoor radon concentration. The results showed that the variables associated with indoor radon concentrations were geogenic radon potential, building material, year of construction, foundation type, building type and floor level. The model, which included the surrounding geogenic radon potential (i.e. the average geogenic radon potential within a disc of radius 20 km centered on the indoor radon measurement point) and variables describing house-specific factors and lifestyle explained about 20% of the overall variability of the logarithm of radon concentration. The surrounding geogenic radon potential was fairly closely associated with the local average indoor radon concentration. The prevalence of exposure to radon above specific thresholds and the average exposures to radon clearly increased with increasing classes of geogenic radon potential. Combining the two datasets enabled improved assessment of radon exposure in a given area in France.


Sujet(s)
Polluants atmosphériques radioactifs/analyse , Pollution de l'air intérieur/analyse , Logement , Radon/analyse , France
6.
J Environ Radioact ; 101(10): 813-20, 2010 Oct.
Article de Anglais | MEDLINE | ID: mdl-20471142

RÉSUMÉ

In order to improve regulatory tools for radon risk management in France, a harmonised methodology to derive a single map of the geogenic radon potential has been developed. This approach consists of determining the capacity of the geological units to produce radon and to facilitate its transfer to the atmosphere, based on the interpretation of existing geological data. This approach is firstly based on a classification of the geological units according to their uranium (U) content, to create a radon source potential map. This initial map is then improved by taking into account the main additional parameters, such as fault lines, which control the preferential pathways of radon through the ground and which can increase the radon levels in soils. The implementation of this methodology to the whole French territory is currently in progress. We present here the results obtained in one region (Bourgogne, Massif Central) which displays significant variations of the geogenic radon potential. The map obtained leads to a more precise zoning than the scale of the existing map of radon priority areas currently based solely on administrative boundaries.


Sujet(s)
Polluants atmosphériques radioactifs/analyse , Radon/analyse , Gestion du risque/méthodes , France , Géologie , Uranium/analyse
7.
J Environ Radioact ; 63(1): 15-33, 2002.
Article de Anglais | MEDLINE | ID: mdl-12230133

RÉSUMÉ

We propose a new methodology for predicting areas with a strong potential for radon (222Rn) exhalation at the soil surface. This methodology is based on the Rn exhalation rate quantification, starting from a precise characterisation of the main local geological and pedological parameters that control the radon source and its transport to the soil/atmosphere interface. It combines a cross mapping analysis of these parameters into a geographic information system with a model of the Rn vertical transport by diffusion in the soil. The rock and soil chemical and physical properties define the entry parameters of this code (named TRACHGEO) which calculates the radon flux density at the surface. This methodology is validated from in situ measurements of radon levels at the soil/atmosphere interface and in dwellings. We apply this approach to an area located in western France and characterised by a basement displaying a heterogeneous radon source potential, as previously demonstrated by lelsch et al. (J. Environ. Radioactivity 53(1) (2001) 75). The new results obtained show that spatial heterogeneity of pedological characteristics in addition to basement geochemistry--must be taken into account to improve the mapping resolution. The TRACHGEO forecasts explain the Rn exhalation variability on a larger scale and in general correlate well with in situ observations. Moreover, the radon-prone sectors identified by this approach generally correspond to the location of the dwellings showing the highest radon concentrations.


Sujet(s)
Contrôle des radiations/normes , Radon/analyse , Polluants radioactifs du sol/analyse , France , Phénomènes géologiques , Géologie , Humains , Contrôle des radiations/méthodes
8.
J Environ Radioact ; 53(1): 75-90, 2001.
Article de Anglais | MEDLINE | ID: mdl-11378929

RÉSUMÉ

The approach proposed in this study provides insight into the influence of the basement geochemistry on the spatial distribution of radon (222Rn) levels both at the soil/atmosphere interface and in the atmosphere. We combine different types of in situ radon measurements and a geochemical classification of the lithologies, based on 1/50,000 geological maps, and on their trace element (U, Th) contents. The advantages of this approach are validated by a survey of a stable basement area of Hercynian age, located in South Brittany (western France) and characterized by metamorphic rocks and granitoids displaying a wide range of uranium contents. The radon source-term of the lithologies, their uranium content, is most likely to be the primary parameter which controls the radon concentrations in the outdoor environment. Indeed, the highest radon levels (> or = 100 Bq m-3 in the atmosphere, > or = 100 mBq m-2 s-1 at the surface of the soil) are mostly observed on lithologies whose mean uranium content can exceed 8 ppm and which correspond to peraluminous leucogranites or metagranitoids derived from uraniferous granitoids.


Sujet(s)
Radon/analyse , France , Phénomènes géologiques , Géologie , Sol , Oligoéléments , Uranium/analyse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE