Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Immunity ; 57(4): 649-673, 2024 Apr 09.
Article de Anglais | MEDLINE | ID: mdl-38599164

RÉSUMÉ

Toll-like receptors (TLRs) are an evolutionarily conserved family in the innate immune system and are the first line of host defense against microbial pathogens by recognizing pathogen-associated molecular patterns (PAMPs). TLRs, categorized into cell surface and endosomal subfamilies, recognize diverse PAMPs, and structural elucidation of TLRs and PAMP complexes has revealed their intricate mechanisms. TLRs activate common and specific signaling pathways to shape immune responses. Recent studies have shown the importance of post-transcriptional regulation in TLR-mediated inflammatory responses. Despite their protective functions, aberrant responses of TLRs contribute to inflammatory and autoimmune disorders. Understanding the delicate balance between TLR activation and regulatory mechanisms is crucial for deciphering their dual role in immune defense and disease pathogenesis. This review provides an overview of recent insights into the history of TLR discovery, elucidation of TLR ligands and signaling pathways, and their relevance to various diseases.


Sujet(s)
Molécules contenant des motifs associés aux pathogènes , Récepteurs de type Toll , Récepteurs de type Toll/métabolisme , Immunité innée/physiologie , Transduction du signal , Régulation de l'expression des gènes
2.
Cell Rep ; 41(11): 111828, 2022 12 13.
Article de Anglais | MEDLINE | ID: mdl-36516765

RÉSUMÉ

Lung CD8+ memory T cells play central roles in protective immunity to respiratory viruses, such as influenza A virus (IAV). Here, we find that alveolar macrophages (AMs) function as antigen-presenting cells that support the expansion of lung CD8+ memory T cells. Intranasal antigen administration to mice subcutaneously immunized with antigen results in a rapid expansion of antigen-specific CD8+ T cells in the lung, which is dependent on antigen cross-presentation by AMs. AMs highly express interleukin-18 (IL-18), which mediates subsequent formation of CD103+CD8+ resident memory T (TRM) cells in the lung. In a mouse model of IAV infection, AMs are required for expansion of virus-specific CD8+ T cells and CD103+CD8+ TRM cells and inhibiting virus replication in the lungs during secondary infection. These results suggest that AMs instruct a rapid expansion of antigen-specific CD8+ T cells in lung, which protect the host from respiratory virus infection.


Sujet(s)
Virus de la grippe A , Infections à Orthomyxoviridae , Souris , Animaux , Macrophages alvéolaires , Lymphocytes T CD8+ , Mémoire immunologique , Cross-priming , Poumon
3.
Front Immunol ; 13: 860915, 2022.
Article de Anglais | MEDLINE | ID: mdl-35615351

RÉSUMÉ

The lungs are constantly exposed to environmental and infectious agents such as dust, viruses, fungi, and bacteria that invade the lungs upon breathing. The lungs are equipped with an immune defense mechanism that involves a wide variety of immunological cells to eliminate these agents. Various types of dendritic cells (DCs) and macrophages (MACs) function as professional antigen-presenting cells (APCs) that engulf pathogens through endocytosis or phagocytosis and degrade proteins derived from them into peptide fragments. During this process, DCs and MACs present the peptides on their major histocompatibility complex class I (MHC-I) or MHC-II protein complex to naïve CD8+ or CD4+ T cells, respectively. In addition to these cells, recent evidence supports that antigen-specific effector and memory T cells are activated by other lung cells such as endothelial cells, epithelial cells, and monocytes through antigen presentation. In this review, we summarize the molecular mechanisms of antigen presentation by APCs in the lungs and their contribution to immune response.


Sujet(s)
Présentation d'antigène , Cellules endothéliales , Cellules cultivées , Cellules dendritiques , Poumon
4.
iScience ; 25(4): 104118, 2022 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-35402874

RÉSUMÉ

The innate immune system is an immediate defense against infectious pathogens by the production of inflammatory cytokines and other mediators. Deficiencies of epigenetic regulatory enzymes, such as Tet1 and Dnmt1, cause dysregulation of cytokine expression. However, it is unclear if DNA methylation at a single CpG dinucleotide in a specific gene locus can regulate gene expression. In this study, we demonstrated that CpG+286 and CpG+348 in exon 2 of the Il6 gene are similar in various primary mouse cells. In lipopolysaccharide-stimulated condition, hypomethylated CpG+286 promoted Il6 expression whereas deletion of CpG+348 led to a reduction in Il6 expression associated with enhanced CTCF binding to the Il6 locus. Moreover, hypomethylation at CpG+286 in alveolar macrophages from aged mice led to higher Il6 expression in response to LPS compared with young mice. Thus, DNA methylation at specific CpG dinucleotides plays an important regulatory role in Il6 expression.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE