Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 19 de 19
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Pharmaceutics ; 15(2)2023 Jan 29.
Article de Anglais | MEDLINE | ID: mdl-36839768

RÉSUMÉ

Contemporary trends in combinatorial chemistry and the design of pharmaceuticals targeting brain disorders have favored the development of drug candidates with increased lipophilicity and poorer water solubility, with the expected improvement in delivery across the blood-brain barrier (BBB). The growing availability of innovative excipients/ligands allowing improved brain targeting and controlled drug release makes the lipid nanocarriers a reasonable choice to overcome the factors impeding drug delivery through the BBB. However, a wide variety of methods, study designs and experimental conditions utilized in the literature hinder their systematic comparison, and thus slows the advances in brain-targeting by lipid-based nanoparticles. This review provides an overview of the methods most commonly utilized during the preclinical testing of liposomes, nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers intended for the treatment of various CNS disorders via the parenteral route. In order to fully elucidate the structure, stability, safety profiles, biodistribution, metabolism, pharmacokinetics and immunological effects of such lipid-based nanoparticles, a transdisciplinary approach to preclinical characterization is mandatory, covering a comprehensive set of physical, chemical, in vitro and in vivo biological testing.

2.
Pharmaceutics ; 15(2)2023 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-36839806

RÉSUMÉ

Since natural-origin, sustainable ingredients are preferred by modern consumers, novel emulsifiers and emollients keep entering the market. This study hypothesizes that a combination of in silico, instrumental tools and simplified sensory studies could be used to efficiently characterize emulsions in a shorter timeframe. A total of 22 rather simple o/w emulsions were prepared by a time/energy-saving emulsification process. A natural mixed emulsifier (Lauryl Glucoside/Myristyl Glucoside/Polyglyceryl-6 Laurate) and two emollients (both with INCI name C15-19 Alkane) were used. The performed D-optimal experimental design within the response surface method (RSM) significantly narrowed down the number of samples about to enter the stage of texture, friction and sensory studies to the samples comprising 30% of a respective Emogreen emollient and 2% or 3% of the emulsifier. The sample comprising 2% emulsifier/30% Emogreen® L15 showed significantly higher firmness (42.12 mN) when compared to the one with 2% emulsifier/30% Emogreen® L19 (33.62 mN), which was somewhat unexpected considering the emollients' inherent viscosity values (4.5 mPa·s for L15 and 9 mPa·s for L19). The sample with 2% emulsifier/30% Emogreen® L19 managed to maintain the lowest friction, while the one with 3% emulsifier/30% Emogreen® L19 released its full lubricating potential in the second part of the measurement (30-60 s). The obtained results revealed the strengths and weaknesses of each formulation, narrowing down their possible applications in the early development stage.

3.
J Colloid Interface Sci ; 634: 300-313, 2023 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-36535166

RÉSUMÉ

HYPOTHESIS: Lipophilic cannabidiol can be solubilized in oil-in water nanoemulsions, which can then be impregnated into chitosan hydrogels forming another colloidal system that will facilitate cannabidiol's release. The delivery from both systems was compared, alongside structural and biological studies, to clarify the effect of the two carriers' structure on the release and toxicity of the systems. EXPERIMENTS: Oil-in-water nanoemulsions (NEs) and the respective nanoemulsion-filled chitosan hydrogels (NE/HGs) were formulated as carriers of cannabidiol (CBD). Size, polydispersity and stability of the NEs were evaluated and then membrane dynamics, shape and structure of both systems were investigated with EPR spin probing, SAXS and microscopy. Biocompatibility of the colloidal delivery systems was evaluated through cytotoxicity tests over normal human skin fibroblasts. An ex vivo permeation protocol using porcine ear skin was implemented to assess the release of CBD and its penetration through the skin. FINDINGS: Incorporation of the NEs in chitosan hydrogels does not significantly affect their structural properties as evidenced through SAXS, EPR and confocal microscopy. These findings indicate the successful development of a novel nanocarrier that preserves the NE structure with the CBD remaining encapsulated in the oil core while providing new rheological properties advantageous over NEs. Moreover, NE/HGs proved to be more efficient as a carrier for the release of CBD. Cell viability assessment revealed high biocompatibility of the proposed colloids.


Sujet(s)
Cannabidiol , Chitosane , Humains , Animaux , Suidae , Hydrogels/composition chimique , Diffusion aux petits angles , Émulsions/composition chimique , Diffraction des rayons X , Eau/composition chimique
4.
Int J Pharm ; 626: 122202, 2022 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-36122613

RÉSUMÉ

PEGylated emulsifiers have been largely used in topical formulations for skin research. They have been a continuous study focus in our group as well. According to our previous studies, severe interruptions of the skin barrier were observed with certain types of emulsifiers. To restore the skin barrier function and counteract the effects of emulsifiers, we considered topically delivering lipids into the lipid matrix of the SC. Herein, PEG-20 cetyl ether (C20) -based oil-in-water (O/W) emulsions were developed owing to the stronger interactions of C20 with skin. The lipids containing ceramides (Cers), palmitic acids (PA), and cholesterol with different ratios and combinations were merged into the base emulsion. PEG-40 stearyl ether (S40)-based emulsion was used as a reference as S40 showed negligible impact on SC lipids. The evaluations were conducted ex vivo with confocal Raman spectroscopy (CRS) regarding the SC lipid, SC thickness, and skin penetration properties. In parallel, the in vivo irritation studies were also implemented including the transepidermal-water-loss (TEWL), skin hydration, and erythema index. The results indicated less SC lipid extraction of topically delivered lipids on ex vivo porcine skin with the addition and ratio of incorporated Cers influencing the extent of formulations counteracting the skin interruption by C20. The ex vivo penetration study showed a similar trend in drug penetration depths. In regards to the in vivo studies, TEWL was demonstrated to be suitable for differentiating the impact on skin barrier properties. The in vivo observations were generally correlated with the ex vivo results. The exact findings in this research can lead us to a better selection of applied lipid components and compositions. Future research will elucidate which type of Cer was predominantly extracted by C20, advancing future formulation development.


Sujet(s)
Émulsifiants , Peau , Animaux , Céramides/composition chimique , Émulsions/composition chimique , Épiderme , Éthers/analyse , Éthers/pharmacologie , Acides palmitiques , Polyéthylène glycols/pharmacologie , Suidae , Eau/analyse
5.
Int J Mol Sci ; 23(11)2022 May 27.
Article de Anglais | MEDLINE | ID: mdl-35682693

RÉSUMÉ

Polymeric film-forming systems have emerged as an esthetically acceptable option for targeted, less frequent and controlled dermal drug delivery. However, their dynamic nature (rapid evaporation of solvents leading to the formation of thin films) presents a true characterization challenge. In this study, we tested a tiered characterization approach, leading to more efficient definition of the quality target product profiles of film-forming systems. After assessing a number of physico-chemico-mechanical properties, thermal, spectroscopic and microscopic techniques were introduced. Final confirmation of betamethasone dipropionate-loaded FFS biopharmaceutical properties was sought via an in vitro skin permeation study. A number of applied characterization methods showed complementarity. The sample based on a combination of hydrophobic Eudragit® RS PO and hydroxypropyl cellulose showed higher viscosity (47.17 ± 3.06 mPa·s) and film thickness, resulting in sustained skin permeation (permeation rate of 0.348 ± 0.157 ng/cm2 h), and even the pH of the sample with Eudragit® NE 30D, along with higher surface roughness and thermal analysis, implied its immediate delivery through the epidermal membrane. Therefore, this study revealed the utility of several methods able to refine the number of needed tests within the final product profile.


Sujet(s)
Absorption cutanée , Peau , Administration par voie cutanée , Bétaméthasone/analogues et dérivés , Systèmes de délivrance de médicaments/méthodes , Peau/métabolisme , Spectroscopie infrarouge à transformée de Fourier
6.
Pharmaceutics ; 14(2)2022 Jan 18.
Article de Anglais | MEDLINE | ID: mdl-35213956

RÉSUMÉ

Topical film-forming systems (FFS) change drastically after solvent displacement, therefore indicating their skin metamorphosis/transformation as a property of special regulatory and research interest. This paper deals with the lack of suitable characterization techniques, suggesting a set of methods able to provide a comprehensive notion of FFS skin performance. After screening the physico-chemical, mechanical and sensory properties of FFS and resulting films, an elaborate three-phase in vivo study was performed, covering skin irritation, friction and substantivity. Upon removal of 24-hour occlusion, no significant change in erythema index was observed, while the film-former type (cellulose ether, acrylate and/or vinyl polymer) affected transepidermal water loss (TEWL); hydrophobic methacrylate copolymer-based samples decreased TEWL by 40-50%, suggesting a semi-occlusive effect. Although both the tribological parameters related to the friction coefficient and the friction curve's plateau provided valuable data, their analysis indicated the importance of the moment the plateau is reached as the onset of the secondary formulation, while the tertiary state is still best described by the completion of the film's drying time. The final part of the in vivo study proved the high in-use substantivity of all samples but confirmed the optimal 4:1 ratio of hydrophobic cationic and hydrophilic polymers, as indicated during early physico-mechanical screening.

7.
Int J Cosmet Sci ; 43(5): 530-546, 2021 Oct.
Article de Anglais | MEDLINE | ID: mdl-34297422

RÉSUMÉ

OBJECTIVE: The growing consumers' preferences and concerns regarding healthy ageing, youthful skin appearance, environmental protection and sustainability have triggered an ever-increasing trend towards natural, eco-friendly and ethically sourced anti-ageing products. Accordingly, this paper describes design and evaluation of novel, safe, effective and high-quality emulsion serums, completely based on ingredients of natural origin, intended for improving facial fine lines and wrinkles. METHODS: Model formulations, stabilized by an innovative glycolipid mixed emulsifier (lauryl glucoside/myristyl glucoside/polyglyceryl-6 laurate) and containing Acmella oleracea extract as a model anti-ageing active, were prepared by cold process and fully assessed regarding their rheological behaviour (continuous rotational and oscillatory tests) and physical stability (dynamic-mechanical thermoanalysis - DMTA test). To study and optimize the simultaneous influence of varied formulation factors (emollients and emulsifier concentrations) on critical rheological attributes of the developed serums, a central composite design within 'design of experiments' approach was employed. The general skin performance - preliminary safety and anti-wrinkle efficacy of selected model serum, was evaluated in human volunteers, by employing several objective, non-invasive bioengineering techniques. RESULTS: Rheological characterization revealed favourable shear-thinning flow behaviour with yield point, and dominating elastic character (storage modulus G' > loss modulus G") in both amplitude and frequency sweeps, which together with relatively small structural change obtained in DMTA test indicated overall satisfying rheological and stability properties of formulated serums. From the established design space, and taking into account formulation cost and carbon footprint, promising model serum (desired/optimal apparent viscosity, yield point and loss factor, rather small and constant structural change), containing 15% of emollients and 1% of emulsifier, was chosen for in vivo evaluations. Screening of skin irritation effects revealed the absence of potential irritancy of investigated serum, suggesting overall satisfying skin tolerability/preliminary safety. Silicone skin replica image analysis demonstrated noticeable reduction/improvement in all measured skin wrinkle parameters after only 2 weeks of test serum application in periorbital and perioral areas, indicating its rapid and beneficial effects on the facial expression lines and wrinkles. CONCLUSION: Altogether, the results corroborate the promising potential of the developed Acmella oleracea extract-loaded emulsion serum as safe, effective and non-invasive natural anti-wrinkle product.


OBJECTIF: Les préférences et les préoccupations croissantes des consommateurs concernant le vieillissement sain, l'apparence jeune de la peau, la protection de l'environnement et la durabilité ont déclenché une tendance toujours croissante vers des produits anti-âge naturels, respectueux de l'environnement et éthiques. En conséquence, ce document décrit le plan et l'évaluation de nouveaux sérums d'émulsion sûrs, efficaces et de haute qualité, entièrement basés sur des ingrédients d'origine naturelle, destinés à améliorer les ridules et rides du visage. MÉTHODES: Des formulations modèles stabilisées par un émulsifiant mixte glycolipide innovant (lauryl glucoside/myristyl glucoside/polyglycéryl-6 laurate) et contenant de l'extrait d'Acmella oleracea comme anti-vieillissement actif de modèle, ont été préparées par un procédé à froid et ont été pleinement évaluées en ce qui concerne leur comportement rhéologique (tests de rotation continue et examens oscillatoires) et stabilité physique (analyse thermomécanique dynamique - DMTA). Pour étudier et optimiser l'influence simultanée de facteurs de formulation variés (concentrations d'émollients et d'émulsifiants) sur les attributs rhéologiques critiques des sérums développés, une conception composite centrale dans le cadre d'une approche « conception d'expériences ¼ a été employée. Les performances cutanées générales - sécurité préliminaire et efficacité antirides du sérum du modèle sélectionné ont été évaluées chez des sujets humains volontaires, en utilisant plusieurs techniques de bio-ingénierie objectives et non invasives. RÉSULTATS: La caractérisation rhéologique a révélé un comportement favorable du débit de cisaillement avec une limite de rendement et une domination du caractère élastique (modulus de stockage G' > module de perte G) dans les balayages d'amplitude et de fréquence, qui, avec un changement structurel relativement faible obtenu dans l'analyse DMTA, a indiqué des propriétés rhéologiques et de stabilité satisfaisante globales des sérums. A partir de l'espace de conception établi, et en tenant compte du coût de composition et de l'empreinte carbone, un sérum modèle prometteur (viscosité apparente souhaitée/optimale, seuil de rendement et facteur de perte, changement structurel assez faible et constant), contenant 15 % d'émollients et 1 % d'émulsifiant, a été choisi pour les évaluations in vivo. Le dépistage des effets d'irritation cutanée a révélé l'absence d'irritation potentielle du sérum expérimental, suggérant une tolérance cutanée/une sécurité préliminaire globalement satisfaisante. L'analyse de l'image de la réplique cutanée en silicone a démontré une réduction/amélioration notable de tous les paramètres de rides cutanées mesurés après seulement deux semaines d'application du sérum test dans les zones périorbitaires et péribuccales, indiquant ses effets rapides et bénéfiques sur les lignes d'expression et les rides du visage. CONCLUSION: Au total, les résultats corroborent le potentiel prometteur du sérum d'émulsion à base d'extrait d'Acmella oleracea développé comme un produit anti-rides naturel sûr, efficace et non invasif.


Sujet(s)
Produits biologiques/pharmacologie , Cosmétiques/pharmacologie , Émulsions/pharmacologie , Extraits de plantes/pharmacologie , Vieillissement de la peau/effets des médicaments et des substances chimiques , Hygiène de la peau/méthodes , Adulte , Femelle , Humains , Mâle , Adulte d'âge moyen , Rhéologie , Viscosité
8.
Pharmaceutics ; 13(5)2021 May 13.
Article de Anglais | MEDLINE | ID: mdl-34068036

RÉSUMÉ

Due to complex interdependent relationships affecting their microstructure, topical semisolid drug formulations face unique obstacles to the development of generics compared to other drug products. Traditionally, establishing bioequivalence is based on comparative clinical trials, which are expensive and often associated with high degrees of variability and low sensitivity in detecting formulation differences. To address this issue, leading regulatory agencies have aimed to advance guidelines relevant to topical generics, ultimately accepting different non-clinical, in vitro/in vivo surrogate methods for topical bioequivalence assessment. Unfortunately, according to both industry and academia stakeholders, these efforts are far from flawless, and often upsurge the potential for result variability and a number of other failure modes. This paper offers a comprehensive review of the literature focused on amending regulatory positions concerning the demonstration of (i) extended pharmaceutical equivalence and (ii) equivalence with respect to the efficacy of topical semisolids. The proposed corrective measures are disclosed and critically discussed, as they span from mere demands to widen the acceptance range (e.g., from ±10% to ±20%/±25% for rheology and in vitro release parameters highly prone to batch-to-batch variability) or reassess the optimal number of samples required to reach the desired statistical power, but also rely on specific data modeling or novel statistical approaches.

9.
Eur J Pharm Sci ; 164: 105895, 2021 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-34087357

RÉSUMÉ

The aim of this study was to compare the efficacy of different approaches for enhancement of dermal availability of the highly lipophilic antifungal model drug - sertaconazole nitrate (SN). For this purpose, a physical penetration enhancer - dissolving microneedles (MNs) was fabricated by filling moulds with liquid formulation based on polyvinylpyrrolidone and loaded with SN. Dissolving MNs were characterised regarding their morphological and mechanical characteristics. A penetration enhancement efficacy of MNs was evaluated in vitro using porcine ear skin in parallel with the efficacy of formerly developed chemical penetration enhancer - biocompatible microemulsion (ME) formulation. Moreover, an ability of solid silicon MNs to significantly improve delivery of SN from ME into the skin has also been investigated. The obtained results showed that dissolving MNs had satisfying morphological properties and mechanical strength. This type of MNs provided comparable drug deposition in the skin as ME formulation, but also revealed an indication of percutaneous absorption of a portion of the administered drug dose. However, the penetration/permeation study results were largely influenced by experimental setup and dosing regimen. Although solid silicon MNs assisted SN dermal delivery led to increase of drug cutaneous retention (1.9-fold) under infinite dosing regimen, the synergistic action of solid MNs and ME applied under finite dosing was more pronounced in comparison with the application either of physical (dissolving MNs) or chemical enhancer (ME) alone. Namely, SN amount accumulated into the skin increased up to 4.67 and 4.37 folds in comparison with ME and dissolving MNs alone, respectively, while reaching a significant decrease in drug permeation through the skin compared to the use of dissolving MNs. Application of ME per se was the only approach that provided selective in vitro dermal drug delivery without SN permeation across the skin. However, despite both types of the used MNs lead to SN permeation in vitro, the ratio between the drug amount deposited in the skin and SN content permeated was significantly higher for the combined approach (12.05) than for dissolving MNs (2.10). Therefore, a combination of solid silicon MNs and biocompatible ME favoured more pronouncedly SN skin accumulation, which is preferable in the treatment of skin fungal infections.


Sujet(s)
Préparations pharmaceutiques , Administration par voie cutanée , Animaux , Systèmes de délivrance de médicaments , Imidazoles , Aiguilles , Absorption cutanée , Suidae , Thiophènes
10.
Biomimetics (Basel) ; 6(1)2021 Jan 27.
Article de Anglais | MEDLINE | ID: mdl-33514031

RÉSUMÉ

During the last decade, many studies have been reported on the design and formulation of novel drug delivery systems proposed for dermal or transdermal administration. The efforts focus on the development of biocompatible nanodispersions that can be delivered to the skin and treat severe skin disorders, including cancer. In this context, oil-in-water (O/W) microemulsions have been developed to encapsulate and deliver lipophilic bioactive molecules for dermal application. An O/W biocompatible microemulsion composed of PBS buffer, Tween 80, and triacetin was assessed for its efficacy as a drug carrier of DPS-2, a lead compound, initially designed in-house to inhibit BRAFV600E oncogenic kinase. The system was evaluated through both in vitro and ex vivo approaches. The cytotoxic effect, in the presence and absence of DPS-2, was examined through the thiazolyl blue tetrazolium bromide (MTT) cell proliferation assay using various cell lines. Further investigation through Western blotting revealed that cells died of necrosis. Porcine ear skin was used as a skin model to evaluate the degree of permeation of DPS-2 through skin and assess its retention. Through the ex vivo experiments, it was clarified that encapsulated DPS-2 was distributed within the full thickness of the stratum corneum (SC) and had a high affinity to hair follicles.

11.
Vaccines (Basel) ; 8(2)2020 Jun 16.
Article de Anglais | MEDLINE | ID: mdl-32560088

RÉSUMÉ

Vaccination has been well recognised as a critically important tool in preventing infectious disease, yet incomplete immunisation coverage remains a major obstacle to achieving disease control and eradication. As medical products for global access, vaccines need to be safe, effective and inexpensive. In line with these goals, continuous improvements of vaccine delivery strategies are necessary to achieve the full potential of immunisation. Novel technologies related to vaccine delivery and route of administration, use of advanced adjuvants and controlled antigen release (single-dose immunisation) approaches are expected to contribute to improved coverage and patient compliance. This review discusses the application of micro- and nano-technologies in the alternative routes of vaccine administration (mucosal and cutaneous vaccination), oral vaccine delivery as well as vaccine encapsulation with the aim of controlled antigen release for single-dose vaccination.

12.
Int J Pharm ; 569: 118624, 2019 Oct 05.
Article de Anglais | MEDLINE | ID: mdl-31419461

RÉSUMÉ

Nanostructured lipid carriers (NLC) and nanoemulsions (NE) are colloid carriers which could improve dermal delivery of tacrolimus. The aims of this study were to evaluate effects of different formulation and process parameters on physicochemical characteristics and stability of lecithin-based NLC with glyceryl palmitostearate as solid and propylene glycol monocaprylate as liquid lipid and to compare the influence of different inner structure of tacrolimus-loaded NLC and corresponding NE on physicochemical characteristics, stability, entrapment efficiency, in vitro drug release and overall skin performance. Solid/liquid lipid ratio, total amount of lipids, homogenization pressure and cooling after the preparation were identified as critical variables in NLC development. Moreover, tacrolimus-loaded NLC emerged as more stabile carrier than NE. Differential stripping performed on porcine ear skin revealed significantly higher tacrolimus amount in stratum corneum from nanocarriers compared to referent ointment (Protopic®). Similarly the highest amount of tacrolimus in hair follicles was obtained using NLC (268.54 ±â€¯92.38 ng/cm2), followed by NE (128.17 ±â€¯48.87 ng/cm2) and Protopic® (77.61 ±â€¯43.25 ng/cm2). Contrary, the highest permeation rate through full-thickness porcine ear skin was observed for Protopic®, implying that the selection of experimental setup is critical for reliable skin performance assessment. Overall, developed NLC could be suggested as promising carrier in a form of lotion for tacrolimus dermal delivery.


Sujet(s)
Vecteurs de médicaments/administration et posologie , Immunosuppresseurs/administration et posologie , Lécithines/administration et posologie , Nanostructures/administration et posologie , Tacrolimus/administration et posologie , Administration par voie cutanée , Animaux , Caprylates/administration et posologie , Caprylates/composition chimique , Vecteurs de médicaments/composition chimique , Préparation de médicament , Libération de médicament , Émulsions , Immunosuppresseurs/composition chimique , Lécithines/composition chimique , Lipides/administration et posologie , Lipides/composition chimique , Nanostructures/composition chimique , Onguents , Propylène glycols/administration et posologie , Propylène glycols/composition chimique , Peau/métabolisme , Absorption cutanée , Suidae , Tacrolimus/composition chimique
13.
Eur J Pharm Sci ; 125: 110-119, 2018 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-30287408

RÉSUMÉ

This study aimed to investigate the potential of lecithin-based nanoemulsions costabilized by sucrose esters, with and without skin pretreatment with stainless steel microneedles, to improve delivery of aceclofenac, as a model drug, into/across the skin. The characterization revealed favorable droplet size (about 180 nm), narrow size distribution (<0.15), high surface charge (about -40 mV) and satisfying long-term stability (one year at 4 ±â€¯1 °C) of the formulation costabilized by sucrose palmitate, demonstrating a similar trend observed for the reference stabilized by widely used lecithin/polysorbate 80 combination. In vitro release/permeation testing and differential stripping on the porcine ear proved the superiority of the sucrose ester- over polysorbate-based nanoemulsion. However, in vitro findings were not fully indicative of the in vivo performances - no significant differences were observed between investigated formulations in pharmacokinetic profile and total amount of aceclofenac deposited in the rat skin 24 h after dosing, simultaneously pointing to delayed aceclofenac delivery into the systemic circulation. In addition, the ratio of plasma concentrations of aceclofenac and its major metabolite in rats, diclofenac, was remarkably changed after topical application of tested nanoemulsions compared to intravenous administration of aceclofenac solution. Finally, skin pretreatment with microneedles improved aceclofenac delivery into/across the rat skin from tested formulations, resulting in 1.4-2.1-fold increased bioavailability and 1.2-1.7-fold enhanced level of aceclofenac retained in the skin, as measured 24 h after administration. Moreover, the plasma concentrations of aceclofenac 24 h after application of tested formulations (lecithin/sucrose palmitate vs. lecithin/polysorbate 80) combined with microneedles (173.37 ±â€¯40.50 ng/ml vs. 259.23 ±â€¯73.18 ng/ml) were significantly higher than those obtained through intact skin (105.69 ±â€¯19.53 ng/ml vs. 88.38 ±â€¯14.46 ng/ml). However, obtained results suggest that combination of microneedles and sucrose palmitate-costabilized nanoemulsion could be useful to attain higher skin concentration, while combination of microneedles with polysorbate 80-costabilized nanoemulsion could be a preferable option for enhancing drug delivery into the bloodstream.


Sujet(s)
Anti-inflammatoires non stéroïdiens/administration et posologie , Diclofenac/analogues et dérivés , Systèmes de délivrance de médicaments , Nanoparticules/administration et posologie , Animaux , Anti-inflammatoires non stéroïdiens/pharmacocinétique , Transport biologique , Diclofenac/administration et posologie , Diclofenac/pharmacocinétique , Libération de médicament , Émulsions , Microinjections , Aiguilles , Rat Wistar , Peau/métabolisme , Absorption cutanée , Saccharose/administration et posologie , Saccharose/analogues et dérivés , Saccharose/pharmacocinétique , Suidae
14.
Int J Pharm ; 529(1-2): 491-505, 2017 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-28711641

RÉSUMÉ

In order to improve skin penetration of tacrolimus we aimed to develop potentially non-irritant, lecithin-based microemulsions containing ethanol, isopropanol and/or propylene glycol as cosurfactants, varying caprylic/capric triglycerides and propylene glycol monocaprylate as oil phase. The influence of excipients on the size of microemulsion region in pseudo-ternary phase diagrams and their ability to form different types of microemulsions was evaluated. The comprehensive physicochemical characterization of microemulsions and the evaluation of their structure was performed, while the localization of tacrolimus in microemulsions was further investigated using electron paramagnetic resonance spectroscopy. Moreover, stability studies proved no change in tacrolimus content during one year of storage at room temperature. In addition, in vivo skin performance indicated no skin irritation potential of blank microemulsions, whereas in vitro release testing using Franz diffusion cells showed superior release rate of tacrolimus from microemulsions (0.98±0.10 and 0.92±0.11µg/cm2/h for two bicontinuous and 1.00±0.24µg/cm2/h for oil-in-water microemulsion) compared to referent Protopic ointment (0.15±0.08µg/cm2/h). Furthermore, ex vivo penetration assessed through porcine ear skin using tape stripping, confirmed superiority of two microemulsions related to the reference, implying developed microemulsions as promising carriers for dermal delivery of tacrolimus.


Sujet(s)
Vecteurs de médicaments/composition chimique , Émulsions/pharmacologie , Lécithines/composition chimique , Absorption cutanée , Tacrolimus/pharmacologie , Animaux , Peau , Tensioactifs , Suidae
15.
Int J Pharm ; 528(1-2): 253-267, 2017 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-28602800

RÉSUMÉ

This work aimed to prove the ability of "ready-to-use" topical vehicles based on alkyl polyglucoside-mixed emulsifier (with/without co-solvent modifications) to replace the conventionally used pharmacopoeial bases (e.g., non-ionic hydrophilic cream) in compounding practice. For this purpose, considering the regulatory efforts to establish alternative, scientifically valid methods for evaluating therapeutic equivalence of topical semisolids, we performed a comparative assessment of microstructure, selected critical quality attributes (CQAs) and in vitro/in vivo product performances, by utilizing aceclofenac as a model drug. The differences in composition between investigated samples have imposed remarkable variances in monitored CQAs (particularly in the amount of aceclofenac dissolved, rheological properties and water distribution mode), reflecting the distinct differences in microstructure formed, as partially observed by polarization microscopy and confocal Raman spectral imaging. Although not fully indicative of the in vivo performances, in vitro release data (vertical diffusion vs. immersion cells) proved the microstructure peculiarities, asserting the rheological properties as decisive factor for obtained liberation profiles. Contrary, in vitro permeation results obtained using pig ear epidermis correlated well with in vivo dermatopharmacokinetic data and distinguished unequivocally between tested formulations, emphasizing the importance of skin/vehicle interactions. In summary, suggested multi-faceted approach can provide adequate proof on topical semisolids therapeutic equivalence or lack thereof.


Sujet(s)
Vecteurs de médicaments/composition chimique , Émulsifiants/composition chimique , Absorption cutanée , Adulte , Animaux , Libération de médicament , Femelle , Humains , Mâle , Peau , Ruban chirurgical , Suidae
16.
Int J Pharm ; 533(2): 421-430, 2017 Nov 30.
Article de Anglais | MEDLINE | ID: mdl-28552767

RÉSUMÉ

This work aimed to deepen the lately acquired knowledge about parenteral nanoemulsions as carriers for brain delivery of risperidone, a poorly water-soluble antipsychotic drug, through establishing the prospective relationship between their physicochemical, pharmacokinetic, biodistribution, and behavioral performances. For this purpose, two optimized risperidone-loaded nanoemulsions, stabilized by lecithin or lecithin/polysorbate 80 mixture, and costabilized by sodium oleate, were produced by high-pressure homogenization. The characterization revealed the favorable droplet size, narrow size distribution, high surface charge, with proven stability to autoclaving and long-term stability for at least one year at 25±2°C. Pharmacokinetic and tissue distribution results demonstrated improved plasma, liver, and brain pharmacokinetic parameters, resulting in 1.2-1.5-fold increased relative bioavailability, 1.1-1.8-fold decreased liver distribution, and about 1.3-fold improved brain uptake of risperidone active moiety following intraperitoneal administration of nanoemulsions relative to solution in rats. In behavioral study, investigated nanoemulsions showed pronounced reduction in basal and, more pertinently, amphetamine-induced locomotor activity in rats, with an early onset of antipsychotic action, and this effect lasted at least 90min after drug injection. Together, these findings corroborate the applicability of parenteral nanoemulsions as carriers for enhanced brain delivery of risperidone, further suggesting their promise in acute psychosis treatment or other emergency situations.


Sujet(s)
Neuroleptiques/administration et posologie , Nanostructures/administration et posologie , Rispéridone/administration et posologie , Animaux , Neuroleptiques/sang , Neuroleptiques/composition chimique , Neuroleptiques/pharmacocinétique , Biodisponibilité , Protéines du sang/métabolisme , Encéphale/métabolisme , Systèmes de délivrance de médicaments , Émulsions , Lécithines/composition chimique , Foie/métabolisme , Locomotion/effets des médicaments et des substances chimiques , Mâle , Nanostructures/composition chimique , Acide oléique/composition chimique , Polysorbates/composition chimique , Troubles psychotiques/traitement médicamenteux , Troubles psychotiques/métabolisme , Rat Wistar , Rispéridone/sang , Rispéridone/composition chimique , Rispéridone/pharmacocinétique , Distribution tissulaire
17.
Acta Pharm ; 67(4): 415-439, 2017 Dec 20.
Article de Anglais | MEDLINE | ID: mdl-29337676

RÉSUMÉ

Two types of biocompatible surfactants were evaluated for their capability to formulate skin-friendly/non-irritant microemulsions as vehicles for two poorly water-soluble model drugs differing in properties and concentrations: alkyl polyglucosides (decyl glucoside and caprylyl/capryl glucoside) and ethoxylated surfactants (glycereth-7-caprylate/ caprate and polysorbate 80). Phase behavior, structural inversion and microemulsion solubilization potential for sertaconazole nitrate and adapalene were found to be highly dependent on the surfactants structure and HLB value. Performed characterization (polarized light microscopy, pH, electrical conductivity, rheological, FTIR and DSC measurements) indicated a formulation containing glycereth- 7-caprylate/caprate as suitable for incorporation of both drugs, whereas alkyl polyglucoside-based systems did not exhibit satisfying solubilization capacity for sertaconazole nitrate. Further, monitored parameters were strongly affected by sertaconazole nitrate incorporation, while they remained almost unchanged in adapalene-loaded vehicles. In addition, results of the in vivo skin performance study supported acceptable tolerability for all investigated formulations, suggesting selected microemulsions as promising carriers worth exploring further for effective skin delivery of model drugs.


Sujet(s)
Caprylates/pharmacocinétique , Émulsions/pharmacologie , Glucosides/pharmacologie , Véhicules pharmaceutiques/pharmacocinétique , Polysorbates/pharmacologie , Peau/métabolisme , Tensioactifs/pharmacologie , Adapalène/pharmacologie , Administration par voie cutanée , Adulte , Caprylates/composition chimique , Émulsions/composition chimique , Glucosides/composition chimique , Humains , Imidazoles/pharmacologie , Microscopie en lumière polarisée , Véhicules pharmaceutiques/composition chimique , Polysorbates/composition chimique , Peau/effets des médicaments et des substances chimiques , Tests d'irritation cutanée , Solubilité , Spectroscopie infrarouge à transformée de Fourier , Tensioactifs/composition chimique , Thiophènes/pharmacologie
18.
Med Sci Monit ; 17(7): CR355-61, 2011 Jul.
Article de Anglais | MEDLINE | ID: mdl-21709628

RÉSUMÉ

BACKGROUND: We assessed prevalence and resistance of uropathogens on antimicrobial agents (AA) from urine cultures (UC) in children hospitalized with urinary tract infections (UTI) at University Hospital in Split. MATERIAL/METHODS: During the 7-year period, children hospitalized only once with UTI alone were compared to those repeatedly hospitalized, and who received long-term antimicrobial prophylaxis (LTAP), as well as those with associated anomalies of the urinary system (US). RESULTS: E. coli was the most frequent isolate (67.7%) with resistance to ampicillin by 69.5%, amoxicillin/clavulonic acid by 3.5%, cephalexin by 6.6%, trimethoprim/sulfamethoxazole (TMP-SMX) by 27.5%, and nitrofurantoin by 0.4%. For other uropathogens, AA resistance rates were the following: 64.3%, 5.8%, 10.5%, 21.3%, and 7.9%. The high or increasing resistance to TMP-SMX is characterized by all uropathogens. Patients with anomalies of US showed a lower prevalence of E. coli and Enterococcus sp., but a higher prevalence of Pseudomonas sp., ESBL-producing E. coli and Klebsiella sp. than those without US anomalies. Repeatedly hospitalized patients showed a lower prevalence of E. coli, but a higher prevalence of Pseudomonas sp. and Klebsiella sp. than patients hospitalized only once. Both groups displayed significantly less resistance of Enterococcus sp. In patients receiving LTAP before hospitalization, E. coli was significantly more resistant to ampicillin, amoxicillin/clavulonic acid and TMP/SMX than in those without LTAP. CONCLUSIONS: Based on our results, we recommend excluding ampicillin altogether, and reconsideration of further use of TMP-SMX, as well as use of nitrofurantoin, cephalexin and amoxicillin/clavulonic acid for LTAP in our region.


Sujet(s)
Antibioprophylaxie/méthodes , Multirésistance aux médicaments , Infections urinaires/épidémiologie , Infections urinaires/microbiologie , Escherichia coli uropathogène/isolement et purification , Anti-infectieux/pharmacologie , Enfant , Croatie/épidémiologie , Enterococcus/effets des médicaments et des substances chimiques , Enterococcus/isolement et purification , Humains , Klebsiella/effets des médicaments et des substances chimiques , Klebsiella/isolement et purification , Prévalence , Pseudomonas/effets des médicaments et des substances chimiques , Pseudomonas/isolement et purification , Escherichia coli uropathogène/effets des médicaments et des substances chimiques
19.
Med Pregl ; 61(7-8): 333-42, 2008.
Article de Anglais, Serbe | MEDLINE | ID: mdl-19097368

RÉSUMÉ

The genesis of auto-immune antibodies directed against the own tissue antigens of a host may be due to the host's immune response to mycobacteria. The prospective study included 110 patients treated for active pulmonary tuberculosis and the control group of 60 healthy subjects, volontary blood donors. Applying the method of indirect immnunofluorescence and cryostat sections of rat organs and human larynx cancer epithelial cell line (HEp-2 cells), the prescence of the following autoantibodies in the serum of the examined patients was examined: anti,nclear (ANA), anticardiac (ACA), antimitochondrial (AMA), antiparietal (APA), anti smooth muscular (ASMA), antithyroidal (ATA), rheumnatoid factor (RF). These autoantibodies were determined in the course oftreatment and five years later. Low levels of some examined autoantibodies were detected in the serum of a number of the examined patients. No significant difference in the presence of the analysed antibodies was registered between the sexes. In the course of the treatment a reversible hyper-gammaglobulinemia developed, which was at least partially due to the presence of autoantibodies in the patients blood serum. Besides possibly involved mechanisms of molecular mimicry and polyclonal lymphocyte activation, the presence of antinuclear antibodies in the patient's serum is at least partially due to isoniazide treatment. The finding of other autoantibodies is nonspecific and not related to the mycobacterial infection or antituberculosis drug administration.


Sujet(s)
Autoanticorps/sang , Tuberculose pulmonaire/immunologie , Adulte , Antituberculeux/usage thérapeutique , Femelle , Technique d'immunofluorescence indirecte , Humains , Mâle , Sérumalbumine/analyse , Tuberculose pulmonaire/sang , Tuberculose pulmonaire/traitement médicamenteux , Globines gamma/analyse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...