Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Plants (Basel) ; 12(9)2023 Apr 27.
Article de Anglais | MEDLINE | ID: mdl-37176853

RÉSUMÉ

The present study characterized a genetically and phenotypically diverse collection of 27 purple and two non-purple (one orange and one yellow) carrot accessions for concentration of root anthocyanins, phenolics, and carotenoids, and antioxidant capacity estimated by four different methods (ORAC, DPPH, ABTS, FRAP), in a partially replicated experimental design comprising data from two growing seasons (2018 and 2019). Broad and significant (p < 0.0001) variation was found among the accessions for all the traits. Acylated anthocyanins (AA) predominated over non-acylated anthocyanins (NAA) in all the accessions and years analyzed, with AA accounting for 55.5-100% of the total anthocyanin content (TAC). Anthocyanins acylated with ferulic acid and coumaric acid were the most abundant carrot anthocyanins. In general, black or solid purple carrots had the greatest TAC and total phenolic content (TPC), and the strongest antioxidant capacities, measured by all methods. Antioxidant capacity, estimated by all methods, was significantly, positively, and moderately-to-strongly correlated with the content of all individual anthocyanins pigments, TAC, and TPC, in both years (r = 0.59-0.90, p < 0.0001), but not with the carotenoid pigments lutein and ß-carotene; suggesting that anthocyanins and other phenolics, but not carotenoids, are major contributors of the antioxidant capacity in purple carrots. We identified accessions with high concentration of chemically stable AA, with potential value for the production of food dyes, and accessions with relatively high content of bioavailable NAA that can be selected for increased nutraceutical value (e.g., for fresh consumption).

2.
Food Chem ; 387: 132893, 2022 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-35397275

RÉSUMÉ

As a means to evaluate the potential of carrot anthocyanins as food colorants and nutraceutical agents, we investigated the physicochemical stability and antioxidant capacity of purple carrot extracts under different pH (2.5-7.0) and temperature (4-40 °C) conditions, in comparison to a commercial synthetic (E131) and a natural grape-based (GRP) colorant. During incubation, the colorants were weekly-monitored for various color parameters, concentration of anthocyanins and phenolics, and antioxidant capacity. Carrot colorants were more stable than GRP; and their thermal stability was equal (at 4 °C) or higher than that of E131 (at 25-40 °C). Carrot anthocyanins had lower degradation rate at low pH and temperature, with acylated anthocyanins (AA) being significantly more stable than non-acylated anthocyanins (NAA). Anthocyanins acylated with feruloyl and coumaroyl glycosides were the most stable carrot pigments. The higher stability of carrot colorants is likely due to their richness in AA and -to a lesser extent- copigmentation with other phenolics.


Sujet(s)
Daucus carota , Colorants alimentaires , Anthocyanes/composition chimique , Antioxydants/métabolisme , Couleur , Daucus carota/composition chimique , Colorants alimentaires/composition chimique , Cinétique , Phénols/métabolisme , Extraits de plantes/composition chimique
3.
Genes (Basel) ; 12(10)2021 09 22.
Article de Anglais | MEDLINE | ID: mdl-34680859

RÉSUMÉ

In purple carrots, anthocyanin pigmentation can be expressed in the entire root, or it can display tissue specific-patterns. Within the phloem, purple pigmentation can be found in the outer phloem (OP) (also called the cortex) and inner phloem (IP), or it can be confined exclusively to the OP. In this work, the genetic control underlying tissue-specific anthocyanin pigmentation in the carrot root OP and IP tissues was investigated by means of linkage mapping and transcriptome (RNA-seq) and phylogenetic analyses; followed by gene expression (RT-qPCR) evaluations in two genetic backgrounds, an F2 population (3242) and the inbred B7262. Genetic mapping of 'root outer phloem anthocyanin pigmentation' (ROPAP) and inner phloem pigmentation (RIPAP) revealed colocalization of ROPAP with the P1 and P3 genomic regions previously known to condition pigmentation in different genetic stocks, whereas RIPAP co-localized with P3 only. Transcriptome analysis of purple OP (POP) vs. non-purple IP (NPIP) tissues, along with linkage and phylogenetic data, allowed an initial identification of 28 candidate genes, 19 of which were further evaluated by RT-qPCR in independent root samples of 3242 and B7262, revealing 15 genes consistently upregulated in the POP in both genetic backgrounds, and two genes upregulated in the POP in specific backgrounds. These include seven transcription factors, seven anthocyanin structural genes, and two genes involved in cellular transport. Altogether, our results point at DcMYB7, DcMYB113, and a MADS-box (DCAR_010757) as the main candidate genes conditioning ROPAP in 3242, whereas DcMYB7 and MADS-box condition RIPAP in this background. In 7262, DcMYB113 conditions ROPAP.


Sujet(s)
Anthocyanes/métabolisme , Daucus carota/métabolisme , Analyse de profil d'expression de gènes , Phloème/métabolisme , Pigments biologiques/métabolisme , Racines de plante/métabolisme , Daucus carota/génétique , Régulation de l'expression des gènes végétaux , Gènes de plante , Réaction de polymérisation en chaine en temps réel
4.
Front Plant Sci ; 12: 633310, 2021.
Article de Anglais | MEDLINE | ID: mdl-33643360

RÉSUMÉ

The American cranberry (Vaccinium macrocarpon Ait.) is an iconic North American fruit crop of great cultural and economic importance. Cranberry can be considered a fruit crop model due to its unique fruit nutrient composition, overlapping generations, recent domestication, both sexual and asexual reproduction modes, and the existence of cross-compatible wild species. Development of cranberry molecular resources started very recently; however, further genetic studies are now being limited by the lack of a high-quality genome assembly. Here, we report the first chromosome-scale genome assembly of cranberry, cultivar Stevens, and a draft genome of its close wild relative species Vaccinium microcarpum. More than 92% of the estimated cranberry genome size (492 Mb) was assembled into 12 chromosomes, which enabled gene model prediction and chromosome-level comparative genomics. Our analysis revealed two polyploidization events, the ancient γ-triplication, and a more recent whole genome duplication shared with other members of the Ericaeae, Theaceae and Actinidiaceae families approximately 61 Mya. Furthermore, comparative genomics within the Vaccinium genus suggested cranberry-V. microcarpum divergence occurred 4.5 Mya, following their divergence from blueberry 10.4 Mya, which agrees with morphological differences between these species and previously identified duplication events. Finally, we identified a cluster of subgroup-6 R2R3 MYB transcription factors within a genomic region spanning a large QTL for anthocyanin variation in cranberry fruit. Phylogenetic analysis suggested these genes likely act as anthocyanin biosynthesis regulators in cranberry. Undoubtedly, these new cranberry genomic resources will facilitate the dissection of the genetic mechanisms governing agronomic traits and further breeding efforts at the molecular level.

5.
Theor Appl Genet ; 132(9): 2485-2507, 2019 Sep.
Article de Anglais | MEDLINE | ID: mdl-31144001

RÉSUMÉ

KEY MESSAGE: Inheritance, QTL mapping, phylogenetic, and transcriptome (RNA-Seq) analyses provide insight into the genetic control underlying carrot root and leaf tissue-specific anthocyanin pigmentation and identify candidate genes for root phloem pigmentation. Purple carrots can accumulate large quantities of anthocyanins in their root tissues, as well as in other plant parts. This work investigated the genetic control underlying tissue-specific anthocyanin pigmentation in the carrot root phloem and xylem, and in leaf petioles. Inheritance of anthocyanin pigmentation in these three tissues was first studied in segregating F2 and F4 populations, followed by QTL mapping of phloem and xylem anthocyanin pigments (independently) onto two genotyping by sequencing-based linkage maps, to reveal two regions in chromosome 3, namely P1 and P3, controlling pigmentation in these three tissues. Both P1 and P3 condition pigmentation in the phloem, with P3 also conditioning pigmentation in the xylem and petioles. By means of linkage mapping, phylogenetic analysis, and comparative transcriptome (RNA-Seq) analysis among carrot roots with differing purple pigmentation phenotypes, we identified candidate genes conditioning pigmentation in the phloem, the main tissue influencing total anthocyanin levels in the root. Among them, a MYB transcription factor, DcMYB7, and two cytochrome CYP450 genes with putative flavone synthase activity were identified as candidates regulating both the presence/absence of pigmentation and the concentration of anthocyanins in the root phloem. Concomitant expression patterns of DcMYB7 and eight anthocyanin structural genes were found, suggesting that DcMYB7 regulates transcription levels in the latter. Another MYB, DcMYB6, was upregulated in specific purple-rooted samples, suggesting a genotype-specific regulatory activity for this gene. These data contribute to the understanding of anthocyanin regulation in the carrot root at a tissue-specific level and maybe instrumental for improving carrot nutritional value.


Sujet(s)
Anthocyanes/génétique , Daucus carota/génétique , Pigmentation/génétique , Feuilles de plante/génétique , Protéines végétales/génétique , Racines de plante/génétique , Locus de caractère quantitatif , Anthocyanes/métabolisme , Chromosomes de plante , Couleur , Daucus carota/croissance et développement , Daucus carota/métabolisme , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes végétaux , Phylogenèse , Feuilles de plante/croissance et développement , Feuilles de plante/métabolisme , Protéines végétales/métabolisme , Racines de plante/croissance et développement , Racines de plante/métabolisme , Polymorphisme de nucléotide simple , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Transcriptome
6.
Am J Bot ; 100(5): 930-8, 2013 May.
Article de Anglais | MEDLINE | ID: mdl-23594914

RÉSUMÉ

PREMISE OF THE STUDY: Analyses of genetic structure and phylogenetic relationships illuminate the origin and domestication of modern crops. Despite being an important worldwide vegetable, the genetic structure and domestication of carrot (Daucus carota) is poorly understood. We provide the first such study using a large data set of molecular markers and accessions that are widely dispersed around the world. • METHODS: Sequencing data from the carrot transcriptome were used to develop 4000 single nucleotide polymorphisms (SNPs). Eighty-four genotypes, including a geographically well-distributed subset of wild and cultivated carrots, were genotyped using the KASPar assay. • KEY RESULTS: Analysis of allelic diversity of SNP data revealed no reduction of genetic diversity in cultivated vs. wild accessions. Structure and phylogenetic analysis indicated a clear separation between wild and cultivated accessions as well as between eastern and western cultivated carrot. Among the wild carrots, those from Central Asia were genetically most similar to cultivated accessions. Furthermore, we found that wild carrots from North America were most closely related to European wild accessions. • CONCLUSIONS: Comparing the genetic diversity of wild and cultivated accessions suggested the absence of a genetic bottleneck during carrot domestication. In conjunction with historical documents, our results suggest an origin of domesticated carrot in Central Asia. Wild carrots from North America were likely introduced as weeds with European colonization. These results provide answers to long-debated questions of carrot evolution and domestication and inform germplasm curators and breeders on genetic substructure of carrot genetic resources.


Sujet(s)
Agriculture , Daucus carota/génétique , Phylogenèse , Polymorphisme de nucléotide simple , Afrique du Nord , Asie , ADN des plantes/génétique , Europe , Marqueurs génétiques , Pigments biologiques , Amérique du Sud
7.
Theor Appl Genet ; 126(2): 415-23, 2013 Feb.
Article de Anglais | MEDLINE | ID: mdl-23015218

RÉSUMÉ

Carrot (Daucus carota L.) is a cool-season vegetable normally classified as a biennial species, requiring vernalization to induce flowering. Nevertheless, some cultivars adapted to warmer climates require less vernalization and can be classified as annual. Most modern carrot cultivars are hybrids which rely upon cytoplasmic male-sterility for commercial production. One major gene controlling floral initiation and several genes restoring male fertility have been reported but none have been mapped. The objective of the present work was to develop the first linkage map of carrot locating the genomic regions that control vernalization response and fertility restoration. Using an F(2) progeny, derived from the intercross between the annual cultivar 'Criolla INTA' and a petaloid male sterile biennial carrot evaluated over 2 years, both early flowering habit, which we name Vrn1, and restoration of petaloid cytoplasmic male sterility, which we name Rf1, were found to be dominant traits conditioned by single genes. On a map of 355 markers covering all 9 chromosomes with a total map length of 669 cM and an average marker-to-marker distance of 1.88 cM, Vrn1 mapped to chromosome 2 with flanking markers at 0.70 and 0.46 cM, and Rf1 mapped to chromosome 9 with flanking markers at 4.38 and 1.12 cM. These are the first two reproductive traits mapped in the carrot genome, and their map location and flanking markers provide valuable tools for studying traits important for carrot domestication and reproductive biology, as well as facilitating carrot breeding.


Sujet(s)
Daucus carota/croissance et développement , Fleurs/croissance et développement , Gènes de plante , Infertilité/génétique , Infertilité/prévention et contrôle , Cartographie chromosomique , Chromosomes de plante , Daucus carota/génétique , Fleurs/génétique , Liaison génétique , Pollen/physiologie , Technique RAPD
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE