Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 78
Filtrer
2.
PLoS One ; 19(6): e0302440, 2024.
Article de Anglais | MEDLINE | ID: mdl-38870165

RÉSUMÉ

Rhizoctonia solani, the causative agent of sheath blight disease in rice, poses a significant threat to agricultural productivity. Traditional management approaches involving chemical fungicides have been effective but come with detrimental consequences for the ecosystem. This study aimed to investigate sustainable alternatives in the form of antifungal peptides derived from Solanaceous plant species as potential agents against R. solani. Peptide extracts were obtained using an optimized antimicrobial peptide (AMP) extraction method and desalted using the solid-phase extraction technique. The antifungal potential of peptide-rich extracts from Solanum tuberosum and Capsicum annum was assessed through in vitro tests employing the agar well diffusion method. Furthermore, peptide-protein docking analysis was performed on HPEPDOCK and HDOCK server; and molecular dynamics simulations (MDS) of 100 ns period were performed using the Gromacs 2020.4. The results demonstrated significant inhibition zones for both extracts at concentrations of 100 mg/mL. Additionally, the extracts of Solanum tuberosum and Capsicum annum had minimum inhibitory concentrations of 50 mg/mL and 25 mg/mL, respectively with minimum fungicidal concentrations of 25 mg/mL. Insights into the potential mechanisms of key peptides inhibiting R. solani targets were gleaned from in-silico studies. Notably, certain AMPs exhibited favorable free energy of binding against pathogenicity-related targets, including histone demethylase, sortin nexin, and squalene synthase, in protein-peptide docking simulations. Extended molecular dynamics simulations lasting 100 ns and MM-PBSA calculations were performed on select protein-peptide complexes. AMP10 displayed the most favorable binding free energy against all target proteins, with AMP3, AMP12b, AMP6, and AMP15 also exhibiting promising results against specific targets of R. solani. These findings underscore the potential of peptide extracts from S. tuberosum and C. annum as effective antifungal agents against rice sheath blight caused by R. solani.


Sujet(s)
Simulation de docking moléculaire , Simulation de dynamique moléculaire , Oryza , Maladies des plantes , Rhizoctonia , Oryza/microbiologie , Maladies des plantes/microbiologie , Rhizoctonia/effets des médicaments et des substances chimiques , Peptides antimicrobiens/pharmacologie , Peptides antimicrobiens/composition chimique , Antifongiques/pharmacologie , Antifongiques/composition chimique , Antifongiques/isolement et purification , Solanum tuberosum/microbiologie , Extraits de plantes/composition chimique , Extraits de plantes/pharmacologie , Solanaceae/composition chimique , Tests de sensibilité microbienne , Simulation numérique , Capsicum/microbiologie , Capsicum/composition chimique
3.
Microbiol Resour Announc ; 13(6): e0023624, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38700341

RÉSUMÉ

We performed whole-genome sequencing of four multidrug-resistant Enterococcus avium strains isolated from milk (4M1), feces (4F1 and 4F2), and farm soil (4S1) of mastitic dairy cows. The draft genomes of E. avium strains 4M1, 4F1, 4F2, and 4S1 were approximately 4.2 Mbp, with 39.1% GC content and 66.5× coverage.

4.
PLoS One ; 19(5): e0296547, 2024.
Article de Anglais | MEDLINE | ID: mdl-38753661

RÉSUMÉ

Endophytic bacteria, recognized as eco-friendly biofertilizers, have demonstrated the potential to enhance crop growth and yield. While the plant growth-promoting effects of endophytic bacteria have been extensively studied, the impact of weed endophytes remains less explored. In this study, we aimed to isolate endophytic bacteria from native weeds and assess their plant growth-promoting abilities in rice under varying chemical fertilization. The evaluation encompassed measurements of mineral phosphate and potash solubilization, as well as indole-3-acetic acid (IAA) production activity by the selected isolates. Two promising strains, tentatively identified as Alcaligenes faecalis (BTCP01) from Eleusine indica (Goose grass) and Metabacillus indicus (BTDR03) from Cynodon dactylon (Bermuda grass) based on 16S rRNA gene phylogeny, exhibited noteworthy phosphate and potassium solubilization activity, respectively. BTCP01 demonstrated superior phosphate solubilizing activity, while BTDR03 exhibited the highest potassium (K) solubilizing activity. Both isolates synthesized IAA in the presence of L-tryptophan, with the detection of nifH and ipdC genes in their genomes. Application of isolates BTCP01 and BTDR03 through root dipping and spraying at the flowering stage significantly enhanced the agronomic performance of rice variety CV. BRRI dhan29. Notably, combining both strains with 50% of recommended N, P, and K fertilizer doses led to a substantial increase in rice grain yields compared to control plants receiving 100% of recommended doses. Taken together, our results indicate that weed endophytic bacterial strains BTCP01 and BTDR03 hold promise as biofertilizers, potentially reducing the dependency on chemical fertilizers by up to 50%, thereby fostering sustainable rice production.


Sujet(s)
Alcaligenes faecalis , Endophytes , Engrais , Oryza , Phosphates , Mauvaises herbes , Oryza/microbiologie , Oryza/croissance et développement , Endophytes/métabolisme , Alcaligenes faecalis/métabolisme , Alcaligenes faecalis/croissance et développement , Mauvaises herbes/microbiologie , Mauvaises herbes/croissance et développement , Phosphates/métabolisme , Acides indolacétiques/métabolisme , ARN ribosomique 16S/génétique , Phylogenèse , Racines de plante/microbiologie , Racines de plante/croissance et développement , Eleusine/microbiologie , Eleusine/croissance et développement , Cynodon/microbiologie , Cynodon/croissance et développement , Potassium/métabolisme
5.
PLoS One ; 19(5): e0303047, 2024.
Article de Anglais | MEDLINE | ID: mdl-38691556

RÉSUMÉ

The field of fish microbiome research has rapidly been advancing, primarily focusing on farmed or laboratory fish species rather than natural or marine fish populations. This study sought to reveal the distinctive gut bacteriome composition and diversity within the anadromous fish species Tenualosa ilisha (hilsa), which holds the status of being the national fish of Bangladesh. We conducted an analysis on 15 gut samples obtained from 15 individual hilsa fishes collected from three primary habitats (e.g., freshwater = 5, brackish water = 5 and marine water = 5) in Bangladesh. The analysis utilized metagenomics based on 16S rRNA gene sequencing targeting the V3-V4 regions. Our comprehensive identification revealed a total of 258 operational taxonomic units (OTUs). The observed OTUs were represented by six phyla, nine classes, 19 orders, 26 families and 40 genera of bacteria. Our analysis unveiled considerable taxonomic differences among the habitats (freshwater, brackish water, and marine water) of hilsa fishes, as denoted by a higher level of shared microbiota (p = 0.007, Kruskal-Wallis test). Among the identified genera in the gut of hilsa fishes, including Vagococcus, Morganella, Enterobacter, Plesiomonas, Shigella, Clostridium, Klebsiella, Serratia, Aeromonas, Macrococcus, Staphylococcus, Proteus, and Hafnia, several are recognized as fish probiotics. Importantly, some bacterial genera such as Sinobaca, Synechococcus, Gemmata, Serinicoccus, Saccharopolyspora, and Paulinella identified in the gut of hilsa identified in this study have not been reported in any aquatic or marine fish species. Significantly, we observed that 67.50% (27/40) of bacterial genera were found to be common among hilsa fishes across all three habitats. Our findings offer compelling evidence for the presence of both exclusive and communal bacteriomes within the gut of hilsa fishes, exhibiting potential probiotic properties. These observations could be crucial for guiding future microbiome investigations in this economically significant fish species.


Sujet(s)
Poissons , Microbiome gastro-intestinal , ARN ribosomique 16S , Animaux , Bangladesh , Microbiome gastro-intestinal/génétique , Poissons/microbiologie , ARN ribosomique 16S/génétique , Bactéries/génétique , Bactéries/classification , Bactéries/isolement et purification , Biodiversité , Phylogenèse
6.
Sci Rep ; 14(1): 11783, 2024 05 23.
Article de Anglais | MEDLINE | ID: mdl-38782944

RÉSUMÉ

Cyprinid herpesvirus is a causative agent of a destructive disease in common and koi carp (Cyprinus carpio), which leads to substantial global financial losses in aquaculture industries. Among the strains of C. herpesvirus, C. herpesvirus 1 (CyHV-1) and C. herpesvirus 3 (CyHV-3) are known as highly pathogenic to carp fishes in Europe, Asia, and Africa. To date, no effective vaccine has been developed to combat these viruses. This study aimed to develop unique multi-epitope subunit vaccines targeting the CyHV-1 and CyHV-3 using a reverse vaccinology approach. The study began with a comprehensive literature review to identify the most critical proteins, which were then subjected to in silico analyses to predict highly antigenic epitopes. These analyses involved assessing antigenicity, transmembrane topology screening, allergenecity, toxicity, and molecular docking approaches. We constructed two multi-epitope-based vaccines incorporating a suitable adjuvant and appropriate linkers. It revealed that both the vaccines are non-toxic and immunogenic. The tertiary structures of the vaccine proteins were generated, refined, and validated to ensure their suitability. The binding affinity between the vaccine constructs and TLR3 and TLR5 receptors were assessed by molecular docking studies. Molecular dynamics simulations indicated that vaccine construct V1 exhibited greater stability with both TLR3 and TLR5 based on RMSD analysis. Hydrogen bond analysis revealed a stronger binding affinity between the vaccine constructs and TLR5 compared to TLR3. Furthermore, MM-PBSA analysis suggested that both vaccine constructs exhibited a better affinity for TLR5. Considering all aspects, the results suggest that in silico development of CyHV vaccines incorporating multiple epitopes holds promise for management of diseases caused by CyHV-1 and CyHV-3. However, further in vivo trials are highly recommended to validate the efficacies of these vaccines.


Sujet(s)
Carpes (poisson) , Maladies des poissons , Infections à Herpesviridae , Herpesviridae , Simulation de docking moléculaire , Vaccins sous-unitaires , Animaux , Vaccins sous-unitaires/immunologie , Carpes (poisson)/virologie , Carpes (poisson)/immunologie , Herpesviridae/immunologie , Maladies des poissons/prévention et contrôle , Maladies des poissons/immunologie , Maladies des poissons/virologie , Infections à Herpesviridae/prévention et contrôle , Infections à Herpesviridae/immunologie , Infections à Herpesviridae/médecine vétérinaire , Infections à Herpesviridae/virologie , Vaccins antiviraux/immunologie , Épitopes/immunologie , Épitopes/composition chimique , Biologie informatique/méthodes , Vaccins contre les herpèsvirus/immunologie ,
7.
PLoS One ; 19(4): e0301519, 2024.
Article de Anglais | MEDLINE | ID: mdl-38578751

RÉSUMÉ

Rice blast disease, caused by the fungus Magnaporthe oryzae, poses a severe threat to rice production, particularly in Asia where rice is a staple food. Concerns over fungicide resistance and environmental impact have sparked interest in exploring natural fungicides as potential alternatives. This study aimed to identify highly potent natural fungicides against M. oryzae to combat rice blast disease, using advanced molecular dynamics techniques. Four key proteins (CATALASE PEROXIDASES 2, HYBRID PKS-NRPS SYNTHETASE TAS1, MANGANESE LIPOXYGENASE, and PRE-MRNA-SPLICING FACTOR CEF1) involved in M. oryzae's infection process were identified. A list of 30 plant metabolites with documented antifungal properties was compiled for evaluation as potential fungicides. Molecular docking studies revealed that 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin exhibited superior binding affinities compared to reference fungicides (Azoxystrobin and Tricyclazole). High throughput molecular dynamics simulations were performed, analyzing parameters like RMSD, RMSF, Rg, SASA, hydrogen bonds, contact analysis, Gibbs free energy, and cluster analysis. The results revealed stable interactions between the selected metabolites and the target proteins, involving important hydrogen bonds and contacts. The SwissADME server analysis indicated that the metabolites possess fungicide properties, making them effective and safe fungicides with low toxicity to the environment and living beings. Additionally, bioactivity assays confirmed their biological activity as nuclear receptor ligands and enzyme inhibitors. Overall, this study offers valuable insights into potential natural fungicides for combating rice blast disease, with 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin standing out as promising and environmentally friendly alternatives to conventional fungicides. These findings have significant implications for developing crop protection strategies and enhancing global food security, particularly in rice-dependent regions.


Sujet(s)
Ascomycota , Fongicides industriels , Magnaporthe , Oryza , Acide quinique/analogues et dérivés , Antifongiques/pharmacologie , Fongicides industriels/pharmacologie , Quercétine/pharmacologie , Simulation de docking moléculaire , Oryza/microbiologie , Flavonoïdes/pharmacologie , Maladies des plantes/prévention et contrôle , Maladies des plantes/microbiologie
8.
Microbiol Resour Announc ; : e0014824, 2024 Apr 11.
Article de Anglais | MEDLINE | ID: mdl-38602401

RÉSUMÉ

This study reports the draft genome of Leuconostoc falkenbergense strain BSMRAU-M1L5, isolated from artisanal buffalo milk curd in Bangladesh. The draft genome spans 1,776,471 bp, with 50× coverage and 96 contigs.

9.
Front Microbiol ; 15: 1336515, 2024.
Article de Anglais | MEDLINE | ID: mdl-38529179

RÉSUMÉ

Crop production often faces challenges from plant diseases, and biological control emerges as an effective, environmentally friendly, cost-effective, and sustainable alternative to chemical control. Wheat blast disease caused by fungal pathogen Magnaporthe oryzae Triticum (MoT), is a potential catastrophic threat to global food security. This study aimed to identify potential bacterial isolates from rice and wheat seeds with inhibitory effects against MoT. In dual culture and seedling assays, three bacterial isolates (BTS-3, BTS-4, and BTLK6A) demonstrated effective suppression of MoT growth and reduced wheat blast severity when artificially inoculated at the seedling stage. Genome phylogeny identified these isolates as Bacillus subtilis (BTS-3) and B. velezensis (BTS-4 and BTLK6A). Whole-genome analysis revealed the presence of genes responsible for controlling MoT through antimicrobial defense, antioxidant defense, cell wall degradation, and induced systemic resistance (ISR). Taken together, our results suggest that the suppression of wheat blast disease by seed endophytic B. subtilis (BTS-3) and B. velezensis (BTS-4 and BTLK6A) is liked with antibiosis and induced systemic resistance to wheat plants. A further field validation is needed before recommending these endophytic bacteria for biological control of wheat blast.

10.
Environ Pollut ; 341: 122940, 2024 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-37984475

RÉSUMÉ

Incidental pesticide application on farmlands can result in contamination of off-target biota, soil, groundwater, and surrounding ecosystems. To manage these pesticide contaminations sustainably, it is important to utilize advanced approaches to pesticide decontamination. This review assesses various innovative strategies applied for remediating pesticide-contaminated sites, including physical, chemical, biological, and nanoremediation. Integrated remediation approaches appear to be more effective than singular technologies. Bioremediation and chemical remediation are considered suitable and sustainable strategies for decontaminating contaminated soils. Furthermore, this study highlights key mechanisms underlying advanced pesticide remediation that have not been systematically studied. The transformation of applied pesticides into metabolites through various biotic and chemical triggering factors is well documented. Ex-situ and in-situ technologies are the two main categories employed for pesticide remediation. However, when selecting a remediation technique, it is important to consider factors such as application sites, cost-effectiveness, and specific purpose. In this review, the sustainability of existing pesticide remediation strategies is thoroughly analyzed as a pioneering effort. Additionally, the study summarizes research uncertainties and technical challenges associated with different remediation approaches. Lastly, specific recommendations and policy advocacy are suggested to enhance contemporary remediation approaches for cleaning up pesticide-contaminated sites.


Sujet(s)
Assainissement et restauration de l'environnement , Pesticides , Polluants du sol , Écosystème , Dépollution biologique de l'environnement , Polluants du sol/analyse , Sol
11.
Microbes Infect ; 26(3): 105285, 2024.
Article de Anglais | MEDLINE | ID: mdl-38154518

RÉSUMÉ

Non-aureus staphylococci (NAS) represent a major etiological agent in dairy animal mastitis, yet their role and impact remain insufficiently studied. This study aimed to elucidate the genomic characteristics of a newly identified multidrug-resistant NAS strain, specifically Staphylococcus warneri G1M1F, isolated from murine feces in an experimental mastitis model. Surprisingly, NAS species accounted for 54.35 % of murine mastitis cases, with S. warneri being the most prevalent at 40.0 %. S. warneri G1M1F exhibited resistance to 10 major antibiotics. Whole-genome sequencing established a genetic connection between G1M1F and S. warneri strains isolated previously from various sources including mastitis milk in dairy animals, human feces and blood across diverse geographical regions. Genomic analysis of S. warneri G1M1F unveiled 34 antimicrobial resistance genes (ARGs), 30 virulence factor genes (VFGs), and 278 metabolic features. A significant portion of identified ARGs (64 %) conferred resistance through antibiotic efflux pumps, while VFGs primarily related to bacterial adherence and biofilm formation. Inoculation with G1M1F in mice resulted in pronounced inflammatory lesions in mammary and colon tissues, indicating pathogenic potential. Our findings highlight distinctive genomic traits in S. warneri G1M1F, signifying the emergence of a novel multidrug-resistant NAS variant. These insights contribute to understanding NAS-related mastitis pathophysiology and inform strategies for effective treatment in dairy animals.


Sujet(s)
Mammite bovine , Staphylococcus aureus résistant à la méticilline , Infections à staphylocoques , Staphylococcus , Femelle , Bovins , Humains , Animaux , Souris , Infections à staphylocoques/médecine vétérinaire , Infections à staphylocoques/microbiologie , Mammite bovine/microbiologie , Antibactériens/pharmacologie , Génomique , Lait/microbiologie
13.
Sci Rep ; 13(1): 19374, 2023 11 08.
Article de Anglais | MEDLINE | ID: mdl-37938584

RÉSUMÉ

Plants have diverse molecular mechanisms to protect themselves from biotic and abiotic stressors and adapt to changing environments. To uncover the genetic potential of plants, it is crucial to understand how they adapt to adverse conditions by analyzing their genomic data. We analyzed RNA-Seq data from different tomato genotypes, tissue types, and drought durations. We used a time series scale to identify early and late drought-responsive gene modules and applied a machine learning method to identify the best responsive genes to drought. We demonstrated six candidate genes of tomato viz. Fasciclin-like arabinogalactan protein 2 (FLA2), Amino acid transporter family protein (ASCT), Arginine decarboxylase 1 (ADC1), Protein NRT1/PTR family 7.3 (NPF7.3), BAG family molecular chaperone regulator 5 (BAG5) and Dicer-like 2b (DCL2b) were responsive to drought. We constructed gene association networks to identify their potential interactors and found them drought-responsive. The identified candidate genes can help to explore the adaptation of tomato plants to drought. Furthermore, these candidate genes can have far-reaching implications for molecular breeding and genome editing in tomatoes, providing insights into the molecular mechanisms that underlie drought adaptation. This research underscores the importance of the genetic basis of plant adaptation, particularly in changing climates and growing populations.


Sujet(s)
Solanum lycopersicum , Solanum lycopersicum/génétique , Sécheresses , Génotype , Apprentissage machine , Expression des gènes
14.
Sci Rep ; 13(1): 18644, 2023 10 30.
Article de Anglais | MEDLINE | ID: mdl-37903828

RÉSUMÉ

The identification of deleterious mutations in different variants of SARS-CoV-2 and their roles in the morbidity of COVID-19 patients has yet to be thoroughly investigated. To unravel the spectrum of mutations and their effects within SARS-CoV-2 genomes, we analyzed 5,724 complete genomes from deceased COVID-19 patients sourced from the GISAID database. This analysis was conducted using the Nextstrain platform, applying a generalized time-reversible model for evolutionary phylogeny. These genomes were compared to the reference strain (hCoV-19/Wuhan/WIV04/2019) using MAFFT v7.470. Our findings revealed that SARS-CoV-2 genomes from deceased individuals belonged to 21 Nextstrain clades, with clade 20I (Alpha variant) being the most predominant, followed by clade 20H (Beta variant) and clade 20J (Gamma variant). The majority of SARS-CoV-2 genomes from deceased patients (33.4%) were sequenced in North America, while the lowest percentage (0.98%) came from Africa. The 'G' clade was dominant in the SARS-CoV-2 genomes of Asian, African, and North American regions, while the 'GRY' clade prevailed in Europe. In our analysis, we identified 35,799 nucleotide (NT) mutations throughout the genome, with the highest frequency (11,402 occurrences) found in the spike protein. Notably, we observed 4150 point-specific amino acid (AA) mutations in SARS-CoV-2 genomes, with D614G (20%) and N501Y (14%) identified as the top two deleterious mutations in the spike protein on a global scale. Furthermore, we detected five common deleterious AA mutations, including G18V, W45S, I33T, P30L, and Q418H, which play a key role in defining each clade of SARS-CoV-2. Our novel findings hold potential value for genomic surveillance, enabling the monitoring of the evolving pattern of SARS-CoV-2 infection, its emerging variants, and their impact on the development of effective vaccination and control strategies.


Sujet(s)
COVID-19 , SARS-CoV-2 , Humains , SARS-CoV-2/génétique , COVID-19/épidémiologie , Glycoprotéine de spicule des coronavirus/génétique , Acides aminés , Mutation , Phylogenèse
15.
Microbiol Resour Announc ; 12(11): e0073023, 2023 Nov 16.
Article de Anglais | MEDLINE | ID: mdl-37902381

RÉSUMÉ

Klebsiella pneumoniae is one of the most important mastitis-causing pathogens. The multidrug-resistant K. pneumoniae strain MNH_G2C5F was isolated from the feces of a cow with clinical mastitis. The MNH_G2C5F strain had a genome size of 5,381,832 bp (85.0× coverage) and typed as sequence type 273 (ST273).

16.
Microbiol Resour Announc ; 12(10): e0044823, 2023 Oct 19.
Article de Anglais | MEDLINE | ID: mdl-37747192

RÉSUMÉ

The gut and flesh microbiome of the national fish of Bangladesh, Tenualosa ilisha, were analyzed using 16S rRNA gene sequencing. Our findings revealed a significant microbial disparity between sample categories and the habitat of hilsa fish, which will serve as a valuable foundation for further comprehensive studies on the hilsa microbiome.

17.
Trends Genet ; 39(9): 646-648, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-37429772

RÉSUMÉ

Recent exciting developments in clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing showcase its potential to rapidly and efficiently edit genomes in planta, eliminating long processes of tissue culture and extensive breeding for crop improvement. These new methods offer heritable transgene-free edits in one generation, making them an attractive option for improving commercially important crops.


Sujet(s)
Systèmes CRISPR-Cas , Édition de gène , Systèmes CRISPR-Cas/génétique , Clustered regularly interspaced short palindromic repeats/génétique , Génome végétal/génétique , Amélioration des plantes
18.
Front Microbiol ; 14: 1212505, 2023.
Article de Anglais | MEDLINE | ID: mdl-37520368

RÉSUMÉ

Plant probiotic bacteria enhance growth and yield of crop plants when applied at the appropriate time and dose. Two rice probiotic bacteria, Paraburkholderia fungorum strain BRRh-4 and Delftia sp. strain BTL-M2 promote growth and yield of plants. However, no information is available on application of these two bacteria on growth, yield, and diversity and population of bacteriome in roots and rhizosphere soils of the treated rice plants. This study aimed to assess the effect of BRRh-4 and BTL-M2 application on growth, yield and bacteriome in roots and rhizosphere soil of rice under varying doses of N, P and K fertilizers. Application of BRRh-4 and BTL-M2 strains significantly (p < 0.05) increased seed germination, growth and yield of rice compared to an untreated control. Interestingly, the grain yield of rice by these bacteria with 50% less of the recommended doses of N, P, and K fertilizers were statistically similar to or better than the rice plants treated with 100% doses of these fertilizers. Targeted amplicon (16S rRNA) sequence-based analysis revealed significant differences (PERMANOVA, p = 0.00035) in alpha-diversity between the root (R) and rhizosphere soil (S) samples, showing higher diversity in the microbial ecosystem of root samples. Additionally, the bacteriome diversity in the root of rice plants that received both probiotic bacteria and chemical fertilizers were significantly higher (PERMANOVA, p = 0.0312) compared to the rice plants treated with fertilizers only. Out of 185 bacterial genera detected, Prevotella, an anaerobic and Gram-negative bacterium, was found to be the predominant genus in both rhizosphere soil and root metagenomes. However, the relative abundance of Prevotella remained two-fold higher in the rhizosphere soil metagenome (52.02%) than in the root metagenome (25.04%). The other predominant bacterial genera detected in the rice root metagenome were Bacillus (11.07%), Planctomyces (4.06%), Faecalibacterium (3.91%), Deinococcus (2.97%), Bacteroides (2.61%), and Chryseobacterium (2.30%). On the other hand, rhizosphere soil metagenome had Bacteroides (12.38%), Faecalibacterium (9.50%), Vibrio (5.94%), Roseomonas (3.40%), and Delftia (3.02%). Interestingly, we found the presence and/or abundance of specific genera of bacteria in rice associated with the application of a specific probiotic bacterium. Taken together, our results indicate that improvement of growth and yield of rice by P. fungorum strain BRRh-4 and Delftia sp. strain BTL-M2 is likely linked with modulation of diversity, structures, and signature of bacteriome in roots and rhizosphere soils. This study for the first time demonstrated that application of plant growth promoting bacteria significantly improve growth, yield and increase the diversity of bacterial community in rice.

20.
Microbiol Resour Announc ; 12(7): e0032023, 2023 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-37314348

RÉSUMÉ

We sequenced the genomes of Escherichia coli isolates G2M6U and G6M1F, two multidrug-resistant strains that were isolated from mammary tissue and fecal samples, respectively, from mice with induced mastitis. The complete genomes of G2M6U and G6M1F consist of chromosomes of 4.4 Mbp and 4.6 Mbp, respectively.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE