Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 148
Filtrer
1.
J Reprod Dev ; 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39048372

RÉSUMÉ

Zinc is an essential trace element for various physiological functions, including reproduction. The influx/efflux of zinc ions is regulated by zinc transporters (Zip1-14 and ZnT1-8, 10). However, the precise roles of zinc transporters and zinc dynamics in reproductive functions are unknown. In this study, ZnT3/Slc30a3 gene knockout (KO) mice were used to analyze the role of ZnT3. In ZnT3 KO mice, intracellular zinc ions in oocytes/zygotes were significantly reduced compared to those in controls, and free zinc ions did not accumulate in the oocyte cytoplasm. However, fertilization of these oocytes and the average litter size were comparable to those of control mice. Our results suggest that ZnT3 plays an important role in the accumulation of zinc ions in oocytes but not in the developmental ability of mice. ZnT3 KO mice will be useful for examining zinc dynamics in oocytes and other tissues.

2.
FASEB J ; 38(13): e23800, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38979931

RÉSUMÉ

Insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM), has emerged as a pathological feature in Alzheimer's disease (AD). Given the shared role of insulin resistance in T2DM and AD, repurposing peripheral insulin sensitizers is a promising strategy to preserve neuronal insulin sensitivity and prevent AD. 1-Deoxynojirimycin (DNJ), a bioactive iminosugar, exhibited insulin-sensitizing effects in metabolic tissues and was detected in brain tissue post-oral intake. However, its impact on brain and neuronal insulin signaling has not been described. Here, we investigated the effect of DNJ treatment on insulin signaling and AD markers in insulin-resistant human SK-N-SH neuroblastoma, a cellular model of neuronal insulin resistance. Our findings show that DNJ increased the expression of insulin signaling genes and the phosphorylation status of key molecules implicated in insulin resistance (Y1146-pIRß, S473-pAKT, S9-GSK3B) while also elevating the expression of glucose transporters Glut3 and Glut4, resulting in higher glucose uptake upon insulin stimuli. DNJ appeared to mitigate the insulin resistance-driven increase in phosphorylated tau and Aß1-42 levels by promoting insulin-induced phosphorylation of GSK3B (a major tau kinase) and enhancing mRNA expression of the insulin-degrading enzyme (IDE) pivotal for insulin and Aß clearance. Overall, our study unveils probable mechanisms underlying the potential benefits of DNJ for AD, wherein DNJ attenuates tau and amyloid pathologies by reversing neuronal insulin resistance. This provides a scientific basis for expanding the use of DNJ-containing products for neuroprotective purposes and prompts further research into compounds with similar mechanisms of action.


Sujet(s)
1-Désoxynojirimycine , Maladie d'Alzheimer , Insulinorésistance , Neurones , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/traitement médicamenteux , Maladie d'Alzheimer/anatomopathologie , Humains , 1-Désoxynojirimycine/pharmacologie , 1-Désoxynojirimycine/analogues et dérivés , Neurones/métabolisme , Neurones/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Peptides bêta-amyloïdes/métabolisme , Protéines tau/métabolisme , Transporteur de glucose de type 3/métabolisme , Transporteur de glucose de type 3/génétique , Insuline/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Transporteur de glucose de type 4/métabolisme , Transporteur de glucose de type 4/génétique , Glycogen synthase kinase 3 beta/métabolisme , Phosphorylation/effets des médicaments et des substances chimiques , Marqueurs biologiques/métabolisme
3.
J Oleo Sci ; 73(6): 847-855, 2024.
Article de Anglais | MEDLINE | ID: mdl-38825538

RÉSUMÉ

Unsaturated fatty acids, such as oleic and linoleic acids, are easily oxidized by exposure to temperature and light in the presence of air to form unsaturated fatty acid hydroperoxides as primary oxidation products. However, the catabolic rates of unsaturated fatty acid hydroperoxides in the human body remain unknown. In this study, ethyl esters of 13C-labeled linoleic acid (*C18:2-EE) and oleic acid (*C18:1-EE) and their hydroperoxides (*C18:2-EE-OOH and *C18:1-EE-OOH, respectively) prepared by the photo-oxidation of *C18:2-EE and *C18:1-EE, respectively, were administered to mice and their catabolic rates were determined by measuring the expired 13CO2 levels. *C18:2-EE-OOH and *C18:1-EE-OOH were ß-oxidized faster than *C18:2-EE and *C18:1-EE, respectively. Notably, rapid ß-oxidation of *C18:2-EE-OOH and *C18:1-EE-OOH was similar to that of medium-chain fatty acids, such as octanoic acid. Then, degradation products of C18:2-EE-OOH and C18:1-EE-OOH were analyzed under gastric conditions by gas chromatography/mass spectrometry. Major decomposition products of C18:2-EE-OOH and C18:1-EE-OOH were medium-chain compounds, such as octanoic acid ethyl ester, 9-oxo-nonanoic acid ethyl ester, and 10-oxo-8-decenoic acid ethyl esters, indicating that C18:2-EE-OOH and C18:1-EE-OOH isomers formed during photo-oxidation were decomposed under acidic conditions. These findings support previous reports that dietary lipid hydroperoxides are not absorbed into the intestine as lipid hydroperoxides but as degradation products. This is the first study to suggest that dietary lipid hydroperoxides decompose during gastric digestion to form medium-chain compounds that are directly absorbed into the liver via the portal vein and rapidly catabolized via ß-oxidation.


Sujet(s)
Dioxyde de carbone , Isotopes du carbone , Acide linoléique , Acide oléique , Oxydoréduction , Animaux , Acide oléique/métabolisme , Acide oléique/composition chimique , Acide linoléique/métabolisme , Acide linoléique/composition chimique , Dioxyde de carbone/métabolisme , Dioxyde de carbone/composition chimique , Souris , Mâle , Peroxyde d'hydrogène/métabolisme
4.
Front Allergy ; 5: 1402841, 2024.
Article de Anglais | MEDLINE | ID: mdl-38803659

RÉSUMÉ

Basophils are the least common granulocytes, accounting for <1% of peripheral blood leukocytes. In the last 20 years, analytical tools for mouse basophils have been developed, and we now recognize that basophils play critical roles in various immune reactions, including the development of allergic inflammation and protective immunity against parasites. Moreover, the combined use of flow cytometric analyses and knockout mice has uncovered several progenitor cells committed to basophils in mice. Recently, advancements in single-cell RNA sequencing (scRNA-seq) technologies have challenged the classical view of the differentiation of various hematopoietic cell lineages. This is also true for basophil differentiation, and studies using scRNA-seq analysis have provided novel insights into basophil differentiation, including the association of basophil differentiation with that of erythrocyte/megakaryocyte and the discovery of novel basophil progenitor cells in the mouse bone marrow. In this review, we summarize the recent findings of basophil ontogeny in both mice and humans, mainly focusing on studies using scRNA-seq analyses.

5.
Mamm Genome ; 35(2): 149-159, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38658415

RÉSUMÉ

The petit (pet) locus is associated with dwarfism, testicular anomalies, severe thymic hypoplasia, and high postnatal lethality, which are inherited in autosomal recessive mode of inheritance in rats with a Wistar strain genetic background. Linkage analysis localized the pet locus between 98.7 Mb and 101.2 Mb on rat chromosome 9. Nucleotide sequence analysis identified 2 bp deletion in exon 2 of the Thap4 gene as the causative mutation for pet. This deletion causes a frameshift and premature termination codon, resulting in a truncated THAP4 protein lacking approximately two-thirds of the C-terminal side. Thap4 is expressed in various organs, including the testis and thymus in rats. To elucidate the biological function of THAP4 in other species, we generated Thap4 knockout mice lacking exon 2 of the Thap4 gene through genome editing. Thap4 knockout mice also exhibited dwarfism and small testis but did not show high postnatal lethality. Thymus weights of adult Thap4 knockout male mice were significantly higher compared to wild-type male mice. Although Thap4 knockout male mice were fertile, their testis contained seminiferous tubules with spermatogenesis and degenerative seminiferous tubules lacking germ cells. Additionally, we observed vacuoles in seminiferous tubules, and clusters of cells in the lumen in seminiferous tubules in Thap4 knockout male mice. These results demonstrate that spontaneous mutation of Thap4 gene in rats and knockout of Thap4 gene in mice both cause dwarfism and testicular anomalies. Thap4 gene in rats and mice is essential for normal testicular development, maintaining spermatogenesis throughout the entire region of seminiferous tubules.


Sujet(s)
Nanisme , Souris knockout , Testicule , Animaux , Mâle , Nanisme/génétique , Nanisme/anatomopathologie , Testicule/métabolisme , Testicule/anatomopathologie , Souris , Rats , Mutation , Rat Wistar
6.
Nat Commun ; 15(1): 2195, 2024 Mar 12.
Article de Anglais | MEDLINE | ID: mdl-38472233

RÉSUMÉ

Recent evidence indicates ferroptosis is implicated in the pathophysiology of various liver diseases; however, the organ-specific regulation mechanism is poorly understood. Here, we demonstrate 7-dehydrocholesterol reductase (DHCR7), the terminal enzyme of cholesterol biosynthesis, as a regulator of ferroptosis in hepatocytes. Genetic and pharmacological inhibition (with AY9944) of DHCR7 suppress ferroptosis in human hepatocellular carcinoma Huh-7 cells. DHCR7 inhibition increases its substrate, 7-dehydrocholesterol (7-DHC). Furthermore, exogenous 7-DHC supplementation using hydroxypropyl ß-cyclodextrin suppresses ferroptosis. A 7-DHC-derived oxysterol metabolite, 3ß,5α-dihydroxycholest-7-en-6-one (DHCEO), is increased by the ferroptosis-inducer RSL-3 in DHCR7-deficient cells, suggesting that the ferroptosis-suppressive effect of DHCR7 inhibition is associated with the oxidation of 7-DHC. Electron spin resonance analysis reveals that 7-DHC functions as a radical trapping agent, thus protecting cells from ferroptosis. We further show that AY9944 inhibits hepatic ischemia-reperfusion injury, and genetic ablation of Dhcr7 prevents acetaminophen-induced acute liver failure in mice. These findings provide new insights into the regulatory mechanism of liver ferroptosis and suggest a potential therapeutic option for ferroptosis-related liver diseases.


Sujet(s)
Ferroptose , Maladies du foie , Oxidoreductases acting on CH-CH group donors , Souris , Animaux , Humains , Dichlorhydrate de trans-1,4-bis([(2-chlorobenzyl)amino]méthyl)cyclohexane , Oxidoreductases acting on CH-CH group donors/métabolisme
7.
Biomolecules ; 14(3)2024 Mar 17.
Article de Anglais | MEDLINE | ID: mdl-38540777

RÉSUMÉ

During mammalian fertilization, repetitive intracellular Ca2+ increases known as Ca2+ oscillations occur. These oscillations are considered crucial for successful fertilization and subsequent embryonic development. Numerous researchers have endeavored to elucidate the factors responsible for inducing Ca2+ oscillations across various mammalian species. Notably, sperm-specific phospholipase C zeta (PLCζ) emerged as a prominent candidate capable of initiating Ca2+ oscillations, particularly in mammals. Genetic mutation of PLCζ in humans results in the absence of Ca2+ oscillations in mouse oocytes. Recent studies further underscored PLCζ's significance, revealing that sperm from PLCζ-deficient (Plcz1-/-) mice fail to induce Ca2+ oscillations upon intracytoplasmic sperm injection (ICSI). Despite these findings, observations from in vitro fertilization (IVF) experiments using Plcz1-/- sperm revealed some residual intracellular Ca2+ increases and successful oocyte activation, hinting at potential alternative mechanisms. In this review, we introduced the current hypothesis surrounding oocyte activation in mammals, informed by contemporary literature, and probed into the enigmatic mechanisms underlying mammalian fertilization-induced oocyte activation.


Sujet(s)
Signalisation calcique , Sperme , Grossesse , Femelle , Mâle , Humains , Souris , Animaux , Phosphoinositide Phospholipase C/génétique , Phosphoinositide Phospholipase C/métabolisme , Phosphoinositide Phospholipase C/pharmacologie , Sperme/métabolisme , Ovocytes/métabolisme , Spermatozoïdes/métabolisme , Type C Phospholipases/métabolisme , Mammifères/métabolisme
8.
Cell Rep Methods ; 4(3): 100710, 2024 Mar 25.
Article de Anglais | MEDLINE | ID: mdl-38401540

RÉSUMÉ

Ferroptosis, a regulated cell death hallmarked by unrestrained lipid peroxidation, plays a pivotal role in the pathophysiology of various diseases, making it a promising therapeutic target. Glutathione peroxidase 4 (GPX4) prevents ferroptosis by reducing (phospho)lipid hydroperoxides, yet evaluation of its actual activity has remained arduous. Here, we present a tangible method using affinity-purified GPX4 to capture a snapshot of its native activity. Next to measuring GPX4 activity, this improved method allows for the investigation of mutational GPX4 activity, exemplified by the GPX4U46C mutant lacking selenocysteine at its active site, as well as the evaluation of GPX4 inhibitors, such as RSL3, as a showcase. Furthermore, we apply this method to the second ferroptosis guardian, ferroptosis suppressor protein 1, to validate the newly identified ferroptosis inhibitor WIN62577. Together, these methods open up opportunities for evaluating alternative ferroptosis suppression mechanisms.


Sujet(s)
Ferroptose , Mort cellulaire régulée , Phospholipid hydroperoxide glutathione peroxidase/métabolisme , Peroxydation lipidique/physiologie , Peroxydes lipidiques
9.
Food Res Int ; 178: 113913, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38309901

RÉSUMÉ

Milk is a rich source of essential nutrients such as lipids. However, lipid oxidation can be considered a crucial factor in determining the initial stage of milk deterioration. Therefore, it is essential to identify the mechanisms of lipid oxidation, such as photo-oxidation or thermal oxidation, to efficiently prevent it by selecting proper antioxidants. In this study, the oxidation mechanisms of long-life (LL) milk were investigated, and triacylglycerol hydroperoxide isomers generated corresponding to the oxidation mechanisms were analyzed by LC-MS/MS. This study first prepared the standard of TG 4:0_16:0_18:1;OOH isomers, which are the appropriate target for evaluating LL milk's oxidation mechanism. The authentic standards provided the robust analysis of TG 4:0_16:0_18:1;OOH isomers and suggested that LL milk was susceptible to photo-oxidation rather than thermal-oxidation. Furthermore, it was discovered that radicals play a role in the oxidation of LL milk during photo-oxidation. This information could be valuable in effectively preventing photo-oxidation in LL milk. It is important to note that milk is contained in a variety of food products. Hence, these findings would be applicable not only to milk but also to various milk-containing food products.


Sujet(s)
, Lait , Animaux , Chromatographie en phase liquide , Peroxyde d'hydrogène , Triglycéride , Spectrométrie de masse en tandem
10.
Microorganisms ; 12(2)2024 Feb 19.
Article de Anglais | MEDLINE | ID: mdl-38399816

RÉSUMÉ

Antimicrobial peptides (AMPs) are present in a wide range of plants, animals, and microorganisms. Since AMPs are characterized by their effectiveness against emergent antibiotic-resistant bacteria, they are attracting attention as next-generation antimicrobial compounds that could solve the problem of drug-resistant bacteria. Persulcatusin (IP), an antibacterial peptide derived from the hard tick Ixodes persulcatus, shows high antibacterial activity against various Gram- positive bacteria as well as multidrug-resistant bacteria. However, reports on the antibacterial action and resistance mechanisms of IP are scarce. In this study, we spontaneously generated mutants showing increased a minimum inhibitory concentration (MIC) of IP and analyzed their cross-resistance to other AMPs and antibiotics. We also used fluorescent probes to investigate the target of IP activity by evaluating IP-induced damage to the bacterial cytoplasmic membrane. Our findings suggest that the antimicrobial activity of IP on bacterial cytoplasmic membranes occurs via a mechanism of action different from that of known AMPs. Furthermore, we screened for mutants with high susceptibility to IP using a transposon mutant library and identified 16 genes involved in IP resistance. Our results indicate that IP, like other AMPs, depolarizes the bacterial cytoplasmic membrane, but it may also alter membrane structure and inhibit cell-wall synthesis.

11.
Nat Commun ; 15(1): 1666, 2024 Feb 23.
Article de Anglais | MEDLINE | ID: mdl-38396021

RÉSUMÉ

Both monocytes and macrophages are heterogeneous populations. It was traditionally understood that Ly6Chi classical (inflammatory) monocytes differentiate into pro-inflammatory Ly6Chi macrophages. Accumulating evidence has suggested that Ly6Chi classical monocytes can also differentiate into Ly6Clo pro-resolving macrophages under certain conditions, while their differentiation trajectory remains to be fully elucidated. The present study with scRNA-seq and flow cytometric analyses reveals that Ly6ChiPD-L2lo classical monocytes recruited to the allergic skin lesion sequentially differentiate into Ly6CloPD-L2hi pro-resolving macrophages, via intermediate Ly6ChiPD-L2hi macrophages but not Ly6Clo non-classical monocytes, in an IL-4 receptor-dependent manner. Along the differentiation, classical monocyte-derived macrophages display anti-inflammatory signatures followed by metabolic rewiring concordant with their ability to phagocytose apoptotic neutrophils and allergens, therefore contributing to the resolution of inflammation. The failure in the generation of these pro-resolving macrophages drives the IL-1α-mediated cycle of inflammation with abscess-like accumulation of necrotic neutrophils. Thus, we clarify the stepwise differentiation trajectory from Ly6Chi classical monocytes toward Ly6Clo pro-resolving macrophages that restrain neutrophilic aggravation of skin allergic inflammation.


Sujet(s)
Eczéma atopique , Monocytes , Souris , Animaux , Monocytes/métabolisme , Macrophages/métabolisme , Inflammation/anatomopathologie , Analyse de profil d'expression de gènes , Eczéma atopique/métabolisme , Souris de lignée C57BL
12.
Anim Sci J ; 95(1): e13931, 2024.
Article de Anglais | MEDLINE | ID: mdl-38400795

RÉSUMÉ

Vitrification is a valuable technology that enables semipermanent preservation and long-distance or international transportation of genetically modified and native animals. In laboratory mice, vitrification maintains and transports embryos, and many institutions and companies sell vitrified embryos. In contrast, despite numerous papers reporting on vitrification in livestock over the past decade, practical implementation has yet to be achieved. However, with advances in genome editing technology, it is anticipated that the number of genetically modified domestic animals will increase, leading to a rise in demand for vitrification of oocytes and embryos. Here, we provide an objective overview of recent advancements in vitrification technology for livestock, drawing a comparison with the current developments in laboratory animals. Additionally, we explore the future prospects for vitrification in livestock, focusing on its potential benefits and drawbacks.


Sujet(s)
Cryoconservation , Vitrification , Souris , Animaux , Cryoconservation/médecine vétérinaire , Fécondation in vitro/médecine vétérinaire , Rodentia , Ovocytes , Mammifères
13.
Biochem Biophys Res Commun ; 698: 149553, 2024 Feb 26.
Article de Anglais | MEDLINE | ID: mdl-38271833

RÉSUMÉ

Ever since the proposal of ferroptosis, it has been studied as a nonapoptotic cell death caused by iron ion-dependent phospholipid (PL) peroxidation. We previously showed that treatment of human hepatoma cell line HepG2 with prepared PL hydroperoxide (PLOOH) resulted in ferroptosis. However, in human sebum, the major hydroperoxide is not PLOOH but squalene hydroperoxide (SQOOH), and to our knowledge, it is not established yet whether SQOOH induces ferroptosis in the skin. In this study, we synthesized SQOOH and treated human keratinocyte HaCaT cells with SQOOH. The results showed that SQOOH induces ferroptosis in HaCaT cells in the same way that PLOOH causes ferroptosis in HepG2 cells. Some natural antioxidants (botanical extracts) could inhibit the ferroptosis in both the cell types. Consequently, future research focus would revolve around the involvement of SQOOH-induced ferroptosis in skin pathologies as well as the prevention and treatment of skin diseases through inhibition of ferroptosis by botanical extracts.


Sujet(s)
Ferroptose , Squalène , Humains , Squalène/pharmacologie , Squalène/métabolisme , Peroxyde d'hydrogène/métabolisme , Cellules HaCaT , Peroxydation lipidique , Kératinocytes/métabolisme
14.
Nihon Yakurigaku Zasshi ; 159(1): 32-38, 2024.
Article de Japonais | MEDLINE | ID: mdl-38171836

RÉSUMÉ

Basophils are the rarest granulocytes representing less than 1% of peripheral blood leukocytes. Even though basophils have been discovered more than 140 years ago, their roles in immune reactions had long been an enigma, partly because of their rarity and the similarity to tissue-resident mast cells. However, recent development of the analytical tools for basophil research, such as basophil-depletion antibody and basophil-related engineered mice, has uncovered the unique roles of basophils in various immune reactions. Basophils are now appreciated as a critical immune cell in various type 2-immune responses including the induction of chronic allergic inflammation and protective immunity against parasites. In this review, we summarize the recent understandings in the roles of basophils in allergic inflammation with especial focus on skin inflammation. We then focus on our recent findings in the differentiation and maturation pathways of basophils.


Sujet(s)
Granulocytes basophiles , Hypersensibilité , Animaux , Souris , Granulocytes basophiles/métabolisme , Différenciation cellulaire , Mastocytes/métabolisme , Inflammation
15.
J Invest Dermatol ; 2023 Oct 11.
Article de Anglais | MEDLINE | ID: mdl-37827277

RÉSUMÉ

Phosphodiesterase 4 inhibitors have been approved for the treatment of atopic dermatitis. However, the cellular and molecular mechanisms underlying their therapeutic effect remain to be fully elucidated. In this study, we addressed this unsolved issue by analyzing the action of difamilast, a novel phosphodiesterase 4 inhibitor, on an oxazolone-induced skin allergic inflammation commonly used as a mouse model of atopic dermatitis. Topical application of difamilast ameliorated skin inflammation in association with reduced IL-4 expression even when the treatment commenced 4 days after the initiation of oxazolone challenge, showing its therapeutic effect on atopic dermatitis. IL-4-deficient mice displayed milder skin inflammation than did wild-type mice, and the difamilast treatment had little or no further therapeutic effect. This was also the case in mice depleted of basophils, predominant producers of IL-4 in the skin lesion, suggesting that difamilast may act on basophils. Notably, basophils accumulating in the skin lesion showed highly upregulated expression of Pde4b encoding the B subtype of the phosphodiesterase 4 family. Difamilast suppressed IL-4 production from basophils activated in vitro, at least in part, through inhibition of ERK phosphorylation. Taken together, difamilast appeared to ameliorate atopic dermatitis inflammation through the suppression of basophil IL-4 production in the skin lesion.

16.
J Reprod Dev ; 69(4): 223-226, 2023 Aug 11.
Article de Anglais | MEDLINE | ID: mdl-37331813

RÉSUMÉ

Superovulation procedures are routinely and widely used in mouse reproductive technology. Previous studies have shown that a large number of oocytes can be obtained from adult mice (> 10 weeks old) using a combined treatment with progesterone (P4) and anti-inhibin serum (AIS). However, these effects have not been fully investigated in young (4 weeks) C57BL/6J mice. Here, we found that a modified superovulation protocol (combined treatment with P4, AIS, eCG (equine chorionic gonadotropin), and hCG (human chorionic gonadotropin); P4D2-Ae-h) improved the number of oocytes compared to the control (eCG and hCG) (39.7 vs. 21.3 oocytes/mouse). After in vitro fertilization, pronuclear formation rates were 69.3% (P4D2-Ae-h group) and 66.2% (control group). After embryo transfer, 46.4% (116/250) of the embryos in the P4D2-Ae-h group successfully developed to term, which was comparable to the control group (42.9%; 123/287 embryos). In conclusion, our protocol (P4D2-Ae-h) was effective for superovulation in young C57BL/6J mice.


Sujet(s)
Gonadotrophine équine , Inhibines , Ovocytes , Progestérone , Animaux , Femelle , Humains , Souris , Gonadotrophine chorionique/pharmacologie , Gonadotrophine équine/pharmacologie , Equus caballus , Inhibines/pharmacologie , Souris de lignée C57BL , Progestérone/pharmacologie , Superovulation
17.
Nat Commun ; 14(1): 2694, 2023 05 18.
Article de Anglais | MEDLINE | ID: mdl-37202383

RÉSUMÉ

Basophils are the rarest granulocytes and are recognized as critical cells for type 2 immune responses. However, their differentiation pathway remains to be fully elucidated. Here, we assess the ontogenetic trajectory of basophils by single-cell RNA sequence analysis. Combined with flow cytometric and functional analyses, we identify c-Kit-CLEC12Ahi pre-basophils located downstream of pre-basophil and mast cell progenitors (pre-BMPs) and upstream of CLEC12Alo mature basophils. The transcriptomic analysis predicts that the pre-basophil population includes previously-defined basophil progenitor (BaP)-like cells in terms of gene expression profile. Pre-basophils are highly proliferative and respond better to non-IgE stimuli but less to antigen plus IgE stimulation than do mature basophils. Although pre-basophils usually remain in the bone marrow, they emerge in helminth-infected tissues, probably through IL-3-mediated inhibition of their retention in the bone marrow. Thus, the present study identifies pre-basophils that bridge the gap between pre-BMPs and mature basophils during basophil ontogeny.


Sujet(s)
Granulocytes basophiles , Transcriptome , Différenciation cellulaire/génétique , Récepteurs à activité tyrosine kinase/métabolisme , Analyse de profil d'expression de gènes
18.
Life (Basel) ; 13(4)2023 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-37109509

RÉSUMÉ

During mammalian fertilization, repetitive rises of intracellular calcium called calcium oscillations are required for full activation of oocytes. Therefore, oocytes such as round spermatid injected or somatic cell nuclear transferred require additional artificial activation which mimics the calcium oscillations. It is well recognized that sperm specific phospholipase C (PLCζ) is a strong candidate as the sperm factor which can induce calcium oscillations and, at least in mammals, the genetic mutation of PLCζ in human causes male infertility due to the lack of calcium oscillations in the oocytes. Recent studies showed that the sperm lacking PLCζ (Plcz1-/-) still could induce rise(s) of intracellular calcium in the oocytes after IVF but not intracytoplasmic sperm injection (ICSI). In the ICSI oocytes, no pronuclear formation or development to the two-cell stage was observed. However, it is still unclear whether additional activation treatment can rescue the low developmental ability of Plcz1-/--sperm-derived oocytes after ICSI. In this study, we examined whether oocytes injected with a Plcz1-/- sperm can develop to term by additional artificial activation. In oocytes injected a Plcz1-/- sperm and Plcz1-/- and eCS (another candidate of the sperm factor) double knockout sperm (Plcz1-/-eCS-/-), the rates of pronuclear formation were very low (2.0 ± 2.3% and 6.1 ± 3.7%, respectively) compared to control (92.1 ± 2.6%). However, these rates were dramatically improved by additional procedures of PLCζ-mRNA injection or SrCl2 treatment (Plcz1-/- sperm + PLCζ mRNA, Plcz1-/- sperm + SrCl2 and Plcz1-/-eCS-/- sperm + PLCζ mRNA; 64.2 ± 10.8%, 89.2 ± 2.4% and 72.6 ± 5.4%, respectively). Most of the oocytes were developed to the two-cell stage. After embryo transfer, healthy pups were obtained in all these groups (Plcz1-/- sperm + PLCζ mRNA:10.0 ± 2.8%, Plcz1-/- sperm + SrCl2:4.0 ± 4.3% and Plcz1-/-eCS-/- sperm + PLCζ mRNA: 10.0 ± 5.7%). The rate in Plcz1-/- sperm + SrCl2 group was significantly lower than that in control (26.0 ± 2.4%). Taken together, our present results show that additional activation treatment such as SrCl2 and PLCζ mRNA can fully support to develop to term even in oocyte injected Plcz1-/- sperm. In addition, PLCζ-induced oocyte activation is more suitable for successful development to term compared to that such as phenomenon induced by SrCl2. These findings will contribute to improvement for male-dependent human infertility and reproductive technologies in other mammalian species.

19.
Antioxidants (Basel) ; 12(3)2023 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-36978972

RÉSUMÉ

The delivery of curcumin (CUR) using the solid dispersion system (CUR solid dispersions; C-SDs) has been shown to improve CUR bioavailability. However, it is unclear how different particle sizes of C-SDs affect the bioavailability and biological activities of CUR. Hence, we prepared C-SDs in different sizes using food-grade excipients and evaluated their bioavailability and biological activities. By pulverizing large particle sizes of C-SDs using zirconia beads, we successfully prepared C-SDs I-IV (particle size: (I) 120, (II) 447, (III) 987, (IV) 1910 nm). When administrated orally in rats, the bioavailability of CUR was increased with decreasing C-SDs size, most likely by improving its solubility in micelles. When administrated intravenously in rats, blood concentrations of CUR were increased with increasing particle size, suggesting that larger C-SDs presumably control the metabolic conversion of CUR. In RAW264 cells, more CUR was taken up by cells as their sizes reduced, and the more potent their anti-inflammatory activities were, suggesting that smaller C-SDs were taken up through a number of cellular uptake pathways. Altogether, the present study showed an evident effect of C-SDs size on their bioavailability and anti-inflammatory activities-information that serves as a basis for improving the functionality of CUR.

20.
Molecules ; 28(3)2023 Jan 27.
Article de Anglais | MEDLINE | ID: mdl-36770922

RÉSUMÉ

Hydrogen can be stored in the interstitial sites of the lattices of intermetallic compounds. To date, intermetallic compound LaNi5 or related LaNi5-based alloys are known to be practical hydrogen storage materials owing to their higher volumetric hydrogen densities, making them a compact hydrogen storage method and allowing stable reversible hydrogen absorption and desorption reactions to take place at room temperature below 1.0 MPa. By contrast, gravimetric hydrogen density is required for key improvements (e.g., gravimetric hydrogen density of LaNi5: 1.38 mass%). Although hydrogen storage materials have typically been evaluated for their hydrogen storage properties below 10 MPa, reactions between hydrogen and materials can be facilitated above 1 GPa because the chemical potential of hydrogen dramatically increases at a higher pressure. This indicates that high-pressure experiments above 1 GPa could clarify the latent hydrogen absorption reactions below 10 MPa and potentially explore new hydride phases. In this study, we investigated the hydrogen absorption reaction of LaNi5 above 1 GPa at room temperature to understand their potential hydrogen storage capacities. The high-pressure experiments on LaNi5 with and without an internal hydrogen source (BH3NH3) were performed using a multi-anvil-type high-pressure apparatus, and the reactions were observed using in situ synchrotron radiation X-ray diffraction with an energy dispersive method. The results showed that 2.07 mass% hydrogen was absorbed by LaNi5 at 6 GPa. Considering the unit cell volume expansion, the estimated hydrogen storage capacity could be 1.5 times higher than that obtained from hydrogen absorption reaction below 1.0 MPa at 303 K. Thus, 33% of the available interstitial sites in LaNi5 remained unoccupied by hydrogen atoms under conventional conditions. Although the hydrogen-absorbed LaNi5Hx (x < 9) was maintained below 573 K at 10 GPa, LaNi5Hx began decomposing into NiH, and the formation of a new phase was observed at 873 K and 10 GPa. The new phase was indexed to a hexagonal or trigonal unit cell with a ≈ 4.44 Å and c ≈ 8.44 Å. Further, the newly-formed phase was speculated to be a new hydride phase because the Bragg peak positions and unit cell parameters were inconsistent with those reported for the La-Ni intermetallic compounds and La-Ni hydride phases.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE