Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 23
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nat Struct Mol Biol ; 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38834915

RÉSUMÉ

SVA (SINE (short interspersed nuclear element)-VNTR (variable number of tandem repeats)-Alu) retrotransposons remain active in humans and contribute to individual genetic variation. Polymorphic SVA alleles harbor gene regulatory potential and can cause genetic disease. However, how SVA insertions are controlled and functionally impact human disease is unknown. Here we dissect the epigenetic regulation and influence of SVAs in cellular models of X-linked dystonia parkinsonism (XDP), a neurodegenerative disorder caused by an SVA insertion at the TAF1 locus. We demonstrate that the KRAB zinc finger protein ZNF91 establishes H3K9me3 and DNA methylation over SVAs, including polymorphic alleles, in human neural progenitor cells. The resulting mini-heterochromatin domains attenuate the cis-regulatory impact of SVAs. This is critical for XDP pathology; removal of local heterochromatin severely aggravates the XDP molecular phenotype, resulting in increased TAF1 intron retention and reduced expression. Our results provide unique mechanistic insights into how human polymorphic transposon insertions are recognized and how their regulatory impact is constrained by an innate epigenetic defense system.

2.
Cell Rep ; 42(11): 113395, 2023 11 28.
Article de Anglais | MEDLINE | ID: mdl-37967557

RÉSUMÉ

Traumatic brain injury (TBI) is a leading cause of chronic brain impairment and results in a robust, but poorly understood, neuroinflammatory response that contributes to the long-term pathology. We used single-nuclei RNA sequencing (snRNA-seq) to study transcriptomic changes in different cell populations in human brain tissue obtained acutely after severe, life-threatening TBI. This revealed a unique transcriptional response in oligodendrocyte precursors and mature oligodendrocytes, including the activation of a robust innate immune response, indicating an important role for oligodendroglia in the initiation of neuroinflammation. The activation of an innate immune response correlated with transcriptional upregulation of endogenous retroviruses in oligodendroglia. This observation was causally linked in vitro using human glial progenitors, implicating these ancient viral sequences in human neuroinflammation. In summary, this work provides insight into the initiating events of the neuroinflammatory response in TBI, which has therapeutic implications.


Sujet(s)
Lésions traumatiques de l'encéphale , Lésions encéphaliques , Rétrovirus endogènes , Humains , Animaux , Souris , Rétrovirus endogènes/génétique , Maladies neuro-inflammatoires , Transcriptome/génétique , Lésions traumatiques de l'encéphale/anatomopathologie , Lésions encéphaliques/anatomopathologie , Oligodendroglie/anatomopathologie , Inflammation/génétique , Inflammation/anatomopathologie , Souris de lignée C57BL
3.
Sci Adv ; 9(44): eadh9543, 2023 11 03.
Article de Anglais | MEDLINE | ID: mdl-37910626

RÉSUMÉ

The genetic mechanisms underlying the expansion in size and complexity of the human brain remain poorly understood. Long interspersed nuclear element-1 (L1) retrotransposons are a source of divergent genetic information in hominoid genomes, but their importance in physiological functions and their contribution to human brain evolution are largely unknown. Using multiomics profiling, we here demonstrate that L1 promoters are dynamically active in the developing and the adult human brain. L1s generate hundreds of developmentally regulated and cell type-specific transcripts, many that are co-opted as chimeric transcripts or regulatory RNAs. One L1-derived long noncoding RNA, LINC01876, is a human-specific transcript expressed exclusively during brain development. CRISPR interference silencing of LINC01876 results in reduced size of cerebral organoids and premature differentiation of neural progenitors, implicating L1s in human-specific developmental processes. In summary, our results demonstrate that L1-derived transcripts provide a previously undescribed layer of primate- and human-specific transcriptome complexity that contributes to the functional diversification of the human brain.


Sujet(s)
Rétroéléments , Transcriptome , Animaux , Humains , Rétroéléments/génétique , Éléments LINE/génétique , Neurones , Primates/génétique
4.
Cell Stem Cell ; 29(1): 52-69.e8, 2022 01 06.
Article de Anglais | MEDLINE | ID: mdl-34624206

RÉSUMÉ

The human forebrain has expanded in size and complexity compared to chimpanzees despite limited changes in protein-coding genes, suggesting that gene expression regulation is an important driver of brain evolution. Here, we identify a KRAB-ZFP transcription factor, ZNF558, that is expressed in human but not chimpanzee forebrain neural progenitor cells. ZNF558 evolved as a suppressor of LINE-1 transposons but has been co-opted to regulate a single target, the mitophagy gene SPATA18. ZNF558 plays a role in mitochondrial homeostasis, and loss-of-function experiments in cerebral organoids suggests that ZNF558 influences developmental timing during early human brain development. Expression of ZNF558 is controlled by the size of a variable number tandem repeat that is longer in chimpanzees compared to humans, and variable in the human population. Thus, this work provides mechanistic insight into how a cis-acting structural variation establishes a regulatory network that affects human brain evolution.


Sujet(s)
Réseaux de régulation génique , Organoïdes , Encéphale/métabolisme , Protéines de liaison à l'ADN , Régulation de l'expression des gènes , Humains , Organoïdes/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
5.
Brain ; 145(9): 3035-3057, 2022 09 14.
Article de Anglais | MEDLINE | ID: mdl-34936701

RÉSUMÉ

Huntington's disease is a neurodegenerative disorder caused by CAG expansions in the huntingtin (HTT) gene. Modelling Huntington's disease is challenging, as rodent and cellular models poorly recapitulate the disease as seen in ageing humans. To address this, we generated induced neurons through direct reprogramming of human skin fibroblasts, which retain age-dependent epigenetic characteristics. Huntington's disease induced neurons (HD-iNs) displayed profound deficits in autophagy, characterized by reduced transport of late autophagic structures from the neurites to the soma. These neurite-specific alterations in autophagy resulted in shorter, thinner and fewer neurites specifically in HD-iNs. CRISPRi-mediated silencing of HTT did not rescue this phenotype but rather resulted in additional autophagy alterations in control induced neurons, highlighting the importance of wild-type HTT in normal neuronal autophagy. In summary, our work identifies a distinct subcellular autophagy impairment in adult patient derived Huntington's disease neurons and provides a new rationale for future development of autophagy activation therapies.


Sujet(s)
Maladie de Huntington , Maladies neurodégénératives , Adulte , Autophagie/physiologie , Humains , Protéine huntingtine/génétique , Maladie de Huntington/génétique , Neurones
6.
EMBO J ; 40(9): e106423, 2021 05 03.
Article de Anglais | MEDLINE | ID: mdl-33644903

RÉSUMÉ

Endogenous retroviruses (ERVs) make up a large fraction of mammalian genomes and are thought to contribute to human disease, including brain disorders. In the brain, aberrant activation of ERVs is a potential trigger for an inflammatory response, but mechanistic insight into this phenomenon remains lacking. Using CRISPR/Cas9-based gene disruption of the epigenetic co-repressor protein Trim28, we found a dynamic H3K9me3-dependent regulation of ERVs in proliferating neural progenitor cells (NPCs), but not in adult neurons. In vivo deletion of Trim28 in cortical NPCs during mouse brain development resulted in viable offspring expressing high levels of ERVs in excitatory neurons in the adult brain. Neuronal ERV expression was linked to activated microglia and the presence of ERV-derived proteins in aggregate-like structures. This study demonstrates that brain development is a critical period for the silencing of ERVs and provides causal in vivo evidence demonstrating that transcriptional activation of ERV in neurons results in an inflammatory response.


Sujet(s)
Encéphale/croissance et développement , Encéphalite/génétique , Rétrovirus endogènes/génétique , Délétion de gène , Protéine-28 à motif tripartite/génétique , Animaux , Encéphale/immunologie , Encéphale/virologie , Systèmes CRISPR-Cas , Cellules cultivées , Encéphalite/immunologie , Encéphalite/virologie , Rétrovirus endogènes/immunologie , Épigenèse génétique , Régulation de l'expression des gènes , Histone/métabolisme , Souris , Activation de la transcription
7.
Neuroscience ; 449: 46-62, 2020 11 21.
Article de Anglais | MEDLINE | ID: mdl-32949670

RÉSUMÉ

Pathological forms of the microtubule-associated protein tau are involved in a large group of neurodegenerative diseases named tauopathies, including frontotemporal lobar degeneration (FTLD-tau). K369I mutant tau transgenic mice (K3 mice) recapitulate neural and behavioural symptoms of FTLD, including tau aggregates in the cortex, alterations to nigrostriatum, memory deficits and parkinsonism. The aim of this study was to further characterise the K3 mouse model by examining functional alterations to the striatum. Whole-cell patch-clamp electrophysiology was used to investigate the properties of striatal neurons in K3 mice and wildtype controls. Additionally, striatal-based instrumental learning tasks were conducted to assess goal-directed versus habitual behaviours (i.e., by examining sensitivity to outcome devaluation and progressive ratios). The K3 model demonstrated significant alterations in the discharge properties of striatal neurons relative to wildtype mice, which manifested as a shift in neuronal output towards a burst firing state. K3 mice acquired goal-directed responding faster than control mice and were goal-directed at test unlike wildtype mice, which is likely to indicate reduced capacity to develop habitual behaviour. The observed pattern of behaviour in K3 mice is suggestive of deficits in dorsal lateral striatal function and this was supported by our electrophysiological findings. Thus, both the electrophysiological and behavioural alterations indicate that K3 mice have early deficits in striatal function. This finding adds to the growing literature which indicate that the striatum is impacted in tau-related neuropathies such as FTLD, and further suggests that the K3 model is a unique mouse model for investigating FTLD especially with striatal involvement.


Sujet(s)
Démence frontotemporale , Dégénérescence lobaire frontotemporale , Tauopathies , Animaux , Objectifs , Souris , Souris transgéniques , Neurones , Protéines tau/génétique
8.
Trends Genet ; 36(8): 610-623, 2020 08.
Article de Anglais | MEDLINE | ID: mdl-32499105

RÉSUMÉ

The etiology of most neurological disorders is poorly understood and current treatments are largely ineffective. New ideas and concepts are therefore vitally important for future research in this area. This review explores the concept that dysregulation of transposable elements (TEs) contributes to the appearance and pathology of neurodevelopmental and neurodegenerative disorders. Despite TEs making up at least half of the human genome, they are vastly understudied in relation to brain disorders. However, recent advances in sequencing technologies and gene editing approaches are now starting to unravel the pathological role of TEs. Aberrant activation of TEs has been found in many neurological disorders; the resulting pathogenic effects, which include alterations of gene expression, neuroinflammation, and direct neurotoxicity, are starting to be resolved. An increased understanding of the relationship between TEs and pathological processes in the brain improves the potential for novel diagnostics and interventions for brain disorders.


Sujet(s)
Éléments transposables d'ADN , Évolution moléculaire , Génome humain , Maladies neurodégénératives/génétique , Troubles du développement neurologique/génétique , Humains , Maladies neurodégénératives/anatomopathologie , Troubles du développement neurologique/anatomopathologie
9.
Heliyon ; 6(1): e03067, 2020 Jan.
Article de Anglais | MEDLINE | ID: mdl-31909251

RÉSUMÉ

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) can be differentiated into many different cell types of the central nervous system. One challenge when using pluripotent stem cells is to develop robust and efficient differentiation protocols that result in homogenous cultures of the desired cell type. Here, we have utilized the SMAD-inhibitors SB431542 and Noggin in a fully defined monolayer culture model to differentiate human pluripotent cells into homogenous forebrain neural progenitors. Temporal fate analysis revealed that this protocol results in forebrain-patterned neural progenitor cells that start to express early neuronal markers after two weeks of differentiation, allowing for the analysis of gene expression changes during neurogenesis. Using this system, we were able to identify many previously uncharacterized long intergenic non-coding RNAs that display dynamic expression during human forebrain neurogenesis.

10.
Nat Commun ; 10(1): 3182, 2019 07 18.
Article de Anglais | MEDLINE | ID: mdl-31320637

RÉSUMÉ

DNA methylation contributes to the maintenance of genomic integrity in somatic cells, in part through the silencing of transposable elements. In this study, we use CRISPR-Cas9 technology to delete DNMT1, the DNA methyltransferase key for DNA methylation maintenance, in human neural progenitor cells (hNPCs). We observe that inactivation of DNMT1 in hNPCs results in viable, proliferating cells despite a global loss of DNA CpG-methylation. DNA demethylation leads to specific transcriptional activation and chromatin remodeling of evolutionarily young, hominoid-specific LINE-1 elements (L1s), while older L1s and other classes of transposable elements remain silent. The activated L1s act as alternative promoters for many protein-coding genes involved in neuronal functions, revealing a hominoid-specific L1-based transcriptional network controlled by DNA methylation that influences neuronal protein-coding genes. Our results provide mechanistic insight into the role of DNA methylation in silencing transposable elements in somatic human cells, as well as further implicating L1s in human brain development and disease.


Sujet(s)
DNA (Cytosine-5-)-methyltransferase 1/génétique , Déméthylation de l'ADN , Méthylation de l'ADN/génétique , Éléments LINE/génétique , Cellules souches neurales/cytologie , Encéphale/embryologie , Systèmes CRISPR-Cas/génétique , Assemblage et désassemblage de la chromatine/génétique , Ilots CpG/génétique , Extinction de l'expression des gènes/physiologie , Humains , Cellules souches neurales/métabolisme , Activation de la transcription/génétique
11.
PLoS Genet ; 15(3): e1008036, 2019 03.
Article de Anglais | MEDLINE | ID: mdl-30865625

RÉSUMÉ

Transposable elements (TEs) are dynamically expressed at high levels in multiple human tissues, but the function of TE-derived transcripts remains largely unknown. In this study, we identify numerous TE-derived microRNAs (miRNAs) by conducting Argonaute2 RNA immunoprecipitation followed by small RNA sequencing (AGO2 RIP-seq) on human brain tissue. Many of these miRNAs originated from LINE-2 (L2) elements, which entered the human genome around 100-300 million years ago. L2-miRNAs derived from the 3' end of the L2 consensus sequence and thus shared very similar sequences, indicating that L2-miRNAs could target transcripts with L2s in their 3'UTR. In line with this, many protein-coding genes carried fragments of L2-derived sequences in their 3'UTR: these sequences served as target sites for L2-miRNAs. L2-miRNAs and their targets were generally ubiquitously expressed at low levels in multiple human tissues, suggesting a role for this network in buffering transcriptional levels of housekeeping genes. In addition, we also found evidence that this network is perturbed in glioblastoma. In summary, our findings uncover a TE-based post-transcriptional network that shapes transcriptional regulation in human cells.


Sujet(s)
Éléments transposables d'ADN , Éléments LINE , microARN/génétique , Régions 3' non traduites , Animaux , Protéines Argonaute/génétique , Protéines Argonaute/métabolisme , Séquence nucléotidique , Encéphale/métabolisme , Tumeurs du cerveau/génétique , Tumeurs du cerveau/métabolisme , Régulation de l'expression des gènes , Réseaux de régulation génique , Génome humain , Glioblastome/génétique , Glioblastome/métabolisme , Humains , Souris , microARN/métabolisme
12.
Brain Res ; 1705: 43-47, 2019 02 15.
Article de Anglais | MEDLINE | ID: mdl-29522722

RÉSUMÉ

TRIM28 is an epigenetic co-repressor protein that mediates transcriptional silencing. TRIM28 participates, together with the large family of Kruppel-associated box domain zinc finger proteins (KRAB-ZFP) transcription factors, in the repression of transposable elements (TE). Recent advances indicate that TRIM28-based repression of TEs occurs in the mammalian brain and may provide beneficial effects through the regulation of transcriptional networks. Here, we provide an overview of TRIM28-related functions, highlighting the role of controlling TEs in neural progenitor cells and discuss how this mechanism may have contributed to the evolution of the complex human brain. Finally, we outline future considerations for the field.


Sujet(s)
Encéphale/métabolisme , Éléments transposables d'ADN/génétique , Protéine-28 à motif tripartite/génétique , Animaux , Épigenèse génétique/génétique , Régulation de l'expression des gènes/génétique , Réseaux de régulation génique , Humains , Protéines de répression/métabolisme , Facteurs de transcription/métabolisme , Protéine-28 à motif tripartite/métabolisme , Protéine-28 à motif tripartite/physiologie
13.
EMBO J ; 36(10): 1379-1391, 2017 05 15.
Article de Anglais | MEDLINE | ID: mdl-28336683

RÉSUMÉ

During adult neurogenesis, newly formed olfactory bulb (OB) interneurons migrate radially to integrate into specific layers of the OB Despite the importance of this process, the intracellular mechanisms that regulate radial migration remain poorly understood. Here, we find that microRNA (miRNA) let-7 regulates radial migration by modulating autophagy in new-born neurons. Using Argonaute2 immunoprecipitation, we performed global profiling of miRNAs in adult-born OB neurons and identified let-7 as a highly abundant miRNA family. Knockdown of let-7 in migrating neuroblasts prevented radial migration and led to an immature morphology of newly formed interneurons. This phenotype was accompanied by a decrease in autophagic activity. Overexpression of Beclin-1 or TFEB in new-born neurons lacking let-7 resulted in re-activation of autophagy and restored radial migration. Thus, these results reveal a miRNA-dependent link between autophagy and adult neurogenesis with implications for neurodegenerative diseases where these processes are impaired.


Sujet(s)
Autophagie , Mouvement cellulaire , microARN/métabolisme , Neurones/physiologie , Animaux , Techniques de knock-down de gènes , Immunoprécipitation , Souris de lignée C57BL , Souris knockout , microARN/génétique
14.
Cell Rep ; 18(1): 1-11, 2017 01 03.
Article de Anglais | MEDLINE | ID: mdl-28052240

RÉSUMÉ

Endogenous retroviruses (ERVs), which make up 8% of the human genome, have been proposed to participate in the control of gene regulatory networks. In this study, we find a region- and developmental stage-specific expression pattern of ERVs in the developing human brain, which is linked to a transcriptional network based on ERVs. We demonstrate that almost 10,000, primarily primate-specific, ERVs act as docking platforms for the co-repressor protein TRIM28 in human neural progenitor cells, which results in the establishment of local heterochromatin. Thereby, TRIM28 represses ERVs and consequently regulates the expression of neighboring genes. These results uncover a gene regulatory network based on ERVs that participates in control of gene expression of protein-coding transcripts important for brain development.


Sujet(s)
Rétrovirus endogènes/génétique , Réseaux de régulation génique , Cellules souches neurales/métabolisme , Cellules souches neurales/virologie , Protéine-28 à motif tripartite/métabolisme , Encéphale/embryologie , Encéphale/virologie , Régulation de l'expression des gènes au cours du développement , Techniques de knock-down de gènes , Humains , Cadres ouverts de lecture/génétique , Liaison aux protéines , Activation de la transcription/génétique , Régulation positive/génétique
15.
Exp Neurol ; 282: 78-85, 2016 08.
Article de Anglais | MEDLINE | ID: mdl-27235932

RÉSUMÉ

Stem cell therapies for neurological disorders are rapidly moving towards use in clinical trials. Before initiation of clinical trials, extensive pre-clinical validation in appropriate animal models is essential. However, grafts of human cells into the rodent brain are rejected within weeks after transplantation and the standard methods of immune-suppression for the purpose of studying human xenografts are not always sufficient for the long-term studies needed for transplanted human neurons to maturate, integrate and provide functional benefits in the host brain. Neonatal injections in rat pups using human fetal brain cells have been shown to desensitise the host to accept human tissue grafts as adults, whilst not compromising their immune system. Here, we show that differentiated human embryonic stem cells (hESCs) can be used for desensitisation to achieve long-term graft survival of human stem cell-derived neurons in a xenograft setting, surpassing the time of conventional pharmacological immune-suppressive treatments. The use of hESCs for desensitisation opens up for a widespread use of the technique, which will be of great value when performing pre-clinical evaluation of stem cell-derived neurons in animal models.


Sujet(s)
Lésions encéphaliques/chirurgie , Désensibilisation immunologique , Rejet du greffon/prévention et contrôle , Transplantation de cellules souches/méthodes , Transplantation hétérologue/méthodes , Animaux , Animaux nouveau-nés , Antigènes CD/métabolisme , Barrière hémato-encéphalique/physiopathologie , Lésions encéphaliques/induit chimiquement , Lésions encéphaliques/immunologie , Lignée de cellules transformées , Ciclosporine/pharmacologie , Modèles animaux de maladie humaine , Femelle , Protéines à fluorescence verte/génétique , Protéines à fluorescence verte/métabolisme , Humains , Immunosuppression thérapeutique , Immunosuppresseurs/pharmacologie , Protéines de tissu nerveux/métabolisme , Molécules d'adhérence cellulaire neurales/métabolisme , Oxidopamine/toxicité , Grossesse , Rats , Rat Sprague-Dawley , Sympatholytiques/toxicité , Facteurs temps
16.
Development ; 142(18): 3166-77, 2015 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-26395143

RÉSUMÉ

MicroRNAs (miRNAs) have been implicated in regulating multiple processes during brain development in various species. However, the function of miRNAs in human brain development remains largely unexplored. Here, we provide a comprehensive analysis of miRNA expression of regionalized neural progenitor cells derived from human embryonic stem cells and human foetal brain. We found miR-92b-3p and miR-130b-5p to be specifically associated with neural progenitors and several miRNAs that display both age-specific and region-specific expression patterns. Among these miRNAs, we identified miR-10 to be specifically expressed in the human hindbrain and spinal cord, while being absent from rostral regions. We found that miR-10 regulates a large number of genes enriched for functions including transcription, actin cytoskeleton and ephrin receptor signalling. When overexpressed, miR-10 influences caudalization of human neural progenitor cells. Together, these data confirm a role for miRNAs in establishing different human neural progenitor populations. This dataset also provides a comprehensive resource for future studies investigating the functional role of different miRNAs in human brain development.


Sujet(s)
Encéphale/embryologie , Encéphale/croissance et développement , microARN/métabolisme , Cellules souches neurales/métabolisme , Analyse de variance , Techniques de culture cellulaire/méthodes , Différenciation cellulaire/physiologie , Lignée cellulaire , Chromosomes artificiels de bactérie , Amorces ADN/génétique , Cytométrie en flux , Gènes rapporteurs/génétique , Vecteurs génétiques/génétique , Protéines à fluorescence verte , Humains , Lentivirus , microARN/génétique , Cellules souches neurales/physiologie , Réaction de polymérisation en chaîne , Réaction de polymérisation en chaine en temps réel , Cartographie de restriction , Facteurs de transcription SOX-B1/génétique
17.
Proc Natl Acad Sci U S A ; 112(15): E1946-55, 2015 Apr 14.
Article de Anglais | MEDLINE | ID: mdl-25775569

RÉSUMÉ

An important challenge for the continued development of cell therapy for Parkinson's disease (PD) is the establishment of procedures that better standardize cell preparations for use in transplantation. Although cell sorting has been an anticipated strategy, its application has been limited by lack of knowledge regarding transmembrane proteins that can be used to target and isolate progenitors for midbrain dopamine (mDA) neurons. We used a "FACS-array" approach to identify 18 genes for transmembrane proteins with high expression in mDA progenitors and describe the utility of four of these targets (Alcam, Chl1, Gfra1, and Igsf8) for isolating mDA progenitors from rat primary ventral mesencephalon through flow cytometry. Alcam and Chl1 facilitated a significant enrichment of mDA neurons following transplantation, while targeting of Gfra1 allowed for robust separation of dopamine and serotonin neurons. Importantly, we also show that mDA progenitors isolated on the basis of transmembrane proteins are capable of extensive, functional innervation of the host striatum and correction of motor impairment in a unilateral model of PD. These results are highly relevant for current efforts to establish safe and effective stem cell-based procedures for PD, where clinical translation will almost certainly require safety and standardization measures in order to deliver well-characterized cell preparations.


Sujet(s)
Neurones dopaminergiques/métabolisme , Analyse de profil d'expression de gènes , Cellules souches neurales/métabolisme , Transplantation de cellules souches/méthodes , Molécule d'adhérence cellulaire des leucocytes activés/génétique , Molécule d'adhérence cellulaire des leucocytes activés/métabolisme , Animaux , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Protéines de transport/génétique , Protéines de transport/métabolisme , Molécules d'adhérence cellulaire/génétique , Molécules d'adhérence cellulaire/métabolisme , Cellules cultivées , Neurones dopaminergiques/cytologie , Neurones dopaminergiques/transplantation , Femelle , Cytométrie en flux/méthodes , Régulation de l'expression des gènes au cours du développement , Récepteurs des facteurs neurotrophiques dérivés des cellules gliales/génétique , Récepteurs des facteurs neurotrophiques dérivés des cellules gliales/métabolisme , Protéines à fluorescence verte/génétique , Protéines à fluorescence verte/métabolisme , Protéines à homéodomaine LIM/génétique , Protéines à homéodomaine LIM/métabolisme , Mâle , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Mésencéphale/cytologie , Mésencéphale/embryologie , Mésencéphale/métabolisme , Lignées consanguines de souris , Souris transgéniques , Microscopie confocale , Protéines de tissu nerveux/génétique , Protéines de tissu nerveux/métabolisme , Cellules souches neurales/cytologie , Cellules souches neurales/transplantation , Maladie de Parkinson/thérapie , Rat Sprague-Dawley , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
18.
Cell Rep ; 10(1): 20-8, 2015 Jan 06.
Article de Anglais | MEDLINE | ID: mdl-25543143

RÉSUMÉ

TRIM28 is a corepressor that mediates transcriptional silencing by establishing local heterochromatin. Here, we show that deletion of TRIM28 in neural progenitor cells (NPCs) results in high-level expression of two groups of endogenous retroviruses (ERVs): IAP1 and MMERVK10C. We find that NPCs use TRIM28-mediated histone modifications to dynamically regulate transcription and silencing of ERVs, which is in contrast to other somatic cell types using DNA methylation. We also show that derepression of ERVs influences transcriptional dynamics in NPCs through the activation of nearby genes and the expression of long noncoding RNAs. These findings demonstrate a unique dynamic transcriptional regulation of ERVs in NPCs. Our results warrant future studies on the role of ERVs in the healthy and diseased brain.


Sujet(s)
Rétrovirus endogènes/génétique , Neurones/métabolisme , Protéines nucléaires/génétique , Protéines de répression/génétique , Transcription génétique , Animaux , Méthylation de l'ADN/génétique , Cellules souches embryonnaires/virologie , Rétrovirus endogènes/pathogénicité , Régulation de l'expression des gènes au cours du développement , Hétérochromatine/génétique , Histone/métabolisme , Humains , Souris , Neurones/virologie , Protéines nucléaires/biosynthèse , Protéines de répression/biosynthèse , Cellules souches/métabolisme , Cellules souches/virologie , Protéine-28 à motif tripartite
19.
Proc Natl Acad Sci U S A ; 107(25): 11602-7, 2010 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-20534548

RÉSUMÉ

In this study, we have used a microRNA-regulated lentiviral reporter system to visualize and segregate differentiating neuronal cells in pluripotent cultures. Efficient suppression of transgene expression, specifically in undifferentiated pluripotent cells, was achieved by using a lentiviral vector expressing a fluorescent reporter gene regulated by microRNA-292. Using this strategy, it was possible to track progeny from murine ES, human ES cells, and induced pluripotent stem cells as they differentiated toward the neural lineage. In addition, this strategy was successfully used to FACS purify neuronal progenitors for molecular analysis and transplantation. FACS enrichment reduced tumor formation and increased survival of ES cell-derived neuronal progenitors after transplantation. The properties and versatility of the microRNA-regulated vectors allows broad use of these vectors in stem cell applications.


Sujet(s)
Techniques de culture cellulaire , Lentivirus/génétique , microARN/génétique , Neurones/cytologie , Cellules souches/cytologie , Animaux , Différenciation cellulaire , Lignage cellulaire , Séparation cellulaire , Cellules souches embryonnaires/cytologie , Cytométrie en flux , Protéines à fluorescence verte/métabolisme , Humains , Souris
20.
Brain ; 133(Pt 2): 482-95, 2010 Feb.
Article de Anglais | MEDLINE | ID: mdl-20123725

RÉSUMÉ

Grafts of foetal ventral mesencephalon, used in cell replacement therapy for Parkinson's disease, are known to contain a mix of dopamine neuronal subtypes including the A9 neurons of the substantia nigra and the A10 neurons of the ventral tegmental area. However, the relative importance of these subtypes for functional repair of the brain affected by Parkinson's disease has not been studied thoroughly. Here, we report results from a series of grafting experiments where the anatomical and functional properties of grafts either selectively lacking in A9 neurons, or with a typical A9/A10 composition were compared. The results show that the A9 component of intrastriatal grafts is of critical importance for recovery in tests on motor performance, in a rodent model of Parkinson's disease. Analysis at the histological level indicates that this is likely to be due to the unique ability of A9 neurons to innervate and functionally activate their target structure, the dorsolateral region of the host striatum. The findings highlight dopamine neuronal subtype composition as a potentially important parameter to monitor in order to understand the variable nature of functional outcome better in transplantation studies. Furthermore, the results have interesting implications for current efforts in this field to generate well-characterized and standardized preparations of transplantable dopamine neuronal progenitors from stem cells.


Sujet(s)
Modèles animaux de maladie humaine , Dopamine/physiologie , Mésencéphale/transplantation , Neurones/transplantation , Maladie de Parkinson/chirurgie , Récupération fonctionnelle/physiologie , Transplants , Animaux , Femelle , Techniques de knock-in de gènes , Mésencéphale/cytologie , Mésencéphale/physiologie , Souris , Souris de lignée C57BL , Souris knockout , Souris transgéniques , Neurones/cytologie , Neurones/physiologie , Maladie de Parkinson/anatomopathologie , Grossesse , Performance psychomotrice/physiologie , Rats , Rat Sprague-Dawley
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...