Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
PeerJ ; 6: e5836, 2018.
Article de Anglais | MEDLINE | ID: mdl-30473930

RÉSUMÉ

Four species of true crocodile (genus Crocodylus) have been described from the Americas. Three of these crocodile species exhibit non-overlapping distributions-Crocodylus intermedius in South America, C. moreletii along the Caribbean coast of Mesoamerica, and C. rhombifer confined to Cuba. The fourth, C. acutus, is narrowly sympatric with each of the other three species. In this study, we sampled 113 crocodiles across Crocodylus populations in Cuba, as well as exemplar populations in Belize and Florida (USA), and sequenced three regions of the mitochondrial genome (D-loop, cytochrome b, cytochrome oxidase I; 3,626 base pair long dataset) that overlapped with published data previously collected from Colombia, Jamaica, and the Cayman Islands. Phylogenetic analyses of these data revealed two, paraphyletic lineages of C. acutus. One lineage, found in the continental Americas, is the sister taxon to C. intermedius, while the Greater Antillean lineage is most closely related to C. rhombifer. In addition to the paraphyly of the two C. acutus lineages, we recovered a 5.4% estimate of Tamura-Nei genetic divergence between the Antillean and continental clades. The reconstructed paraphyly, distinct phylogenetic affinities and high genetic divergence between Antillean and continental C. acutus populations are consistent with interspecific differentiation within the genus and suggest that the current taxon recognized as C. acutus is more likely a complex of cryptic species warranting a reassessment of current taxonomy. Moreover, the inclusion, for the first time, of samples from the western population of the American crocodile in Cuba revealed evidence for continental mtDNA haplotypes in the Antilles, suggesting this area may constitute a transition zone between distinct lineages of C. acutus. Further study using nuclear character data is warranted to more fully characterize this cryptic diversity, resolve taxonomic uncertainty, and inform conservation planning in this system.

2.
PLoS One ; 8(9): e71668, 2013.
Article de Anglais | MEDLINE | ID: mdl-24086253

RÉSUMÉ

The critically endangered Central American River Turtle (Dermatemys mawii) is the only remaining member of the Dermatemydidae family, yet little is known about its population structuring. In a previous study of mitochondrial (mt) DNA in the species, three main lineages were described. One lineage (Central) was dominant across most of the range, while two other lineages were restricted to Papaloapan (PAP; isolated by the Isthmus of Tehuantepec and the Sierra de Santa Marta) or the south-eastern part of the range (1D). Here we provide data from seven polymorphic microsatellite loci and the R35 intron to re-evaluate these findings using DNA from the nuclear genome. Based on a slightly expanded data set of a total of 253 samples from the same localities, we find that mtDNA and nuclear DNA markers yield a highly congruent picture of the evolutionary history and population structuring of D. mawii. While resolution provided by the R35 intron (sequenced for a subset of the samples) was very limited, the microsatellite data revealed pronounced population structuring. Within the Grijalva-Usumacinta drainage basin, however, many populations separated by more than 300 kilometers showed signals of high gene flow. Across the entire range, neither mitochondrial nor nuclear DNA show a significant isolation-by-distance pattern, but both genomes highlight that the D. mawii population in the Papaloapan basin is genetically distinctive. Further, both marker systems detect unique genomic signals in four individuals with mtDNA clade 1D sampled on the southeast edge of the Grijalva-Usumacinta basin. These individuals may represent a separate cryptic taxon that is likely impacted by recent admixture.


Sujet(s)
Espèce en voie de disparition , Flux des gènes , Tortues , Animaux , Amérique centrale , ADN mitochondrial/génétique , Variation génétique , Dynamique des populations , Tortues/génétique
3.
Gene ; 340(2): 189-96, 2004 Oct 13.
Article de Anglais | MEDLINE | ID: mdl-15475160

RÉSUMÉ

Recent marsupials include about 280 species divided into 18 families and seven orders. Approximately 200 species live in Australia/New Guinea. The remaining species inhabit South America with some of these secondarily ranging into North America. In this study, we examine marsupial relationships and estimate their divergences times using complete mitochondrial (mt) genomes. The sampling, which includes nine new mtDNAs and a total number of 19 marsupial genomes, encompasses all extant orders and 14 families. The analysis identified a basal split between Didelphimorphia and remaining orders about 69 million years before present (MYBP), while other ordinal divergences were placed in Tertiary times. The monotypic South American order Microbiotheria (Dromiciops gliroides, Monito del Monte) was solidly nested among its Australian counterparts. The results suggest that marsupials colonized Australia twice from Antarctica/South America and that the divergence between Microbiotheria and its Australian relatives coincided with the geological separation of Antarctica and Australia. Within Australia itself, several of the deepest divergences were estimated to have taken place close to the Eocene/Oligocene transition.


Sujet(s)
Marsupialia/génétique , Phylogenèse , Animaux , ADN mitochondrial/génétique , Variation génétique , Marsupialia/classification , Protéines mitochondriales/génétique , Amérique du Sud , Facteurs temps
4.
J Mol Evol ; 57 Suppl 1: S3-12, 2003.
Article de Anglais | MEDLINE | ID: mdl-15008398

RÉSUMÉ

The complete mitochondrial (mt) genomes of five marsupial species have been sequenced. The species represent all three South American orders (Didelphimorphia, Paucituberculata, and Microbiotheria). Phylogenetic analysis of this data set indicates that Didelphimorphia is a basal marsupial lineage followed by Paucituberculata. The South American microbiotherid Dromiciops gliroides (monito del monte) groups with Australian marsupials, suggesting a marsupial colonization of Australia on two occasions or, alternatively, a migration of an Australian marsupial lineage to South America. Molecular estimates suggest that the deepest marsupial divergences took place 64-62 million years before present (MYBP), implying that the radiation of recent marsupials took place after the K/T (Cretaceous/Tertiary) boundary. The South American marsupial lineages are all characterized by a putatively non-functional tRNA for lysine, a potential RNA editing of the tRNA for asparagine, and a rearrangement of tRNA genes at the origin of light strand replication.


Sujet(s)
Évolution biologique , ADN mitochondrial , Génome , Marsupialia/génétique , Animaux , Australie , Séquence nucléotidique , Cytochromes b/génétique , Évolution moléculaire , Fossiles , Données de séquences moléculaires , Phylogenèse , ARN de transfert de l'acide aspartique/génétique , ARN de transfert de la lysine/génétique , Analyse de séquence d'ADN , Amérique du Sud
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE