Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 103
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Physiol ; 594(13): 3521-31, 2016 07 01.
Article de Anglais | MEDLINE | ID: mdl-26864683

RÉSUMÉ

Nerve injury triggers the conversion of myelin and non-myelin (Remak) Schwann cells to a cell phenotype specialized to promote repair. Distal to damage, these repair Schwann cells provide the necessary signals and spatial cues for the survival of injured neurons, axonal regeneration and target reinnervation. The conversion to repair Schwann cells involves de-differentiation together with alternative differentiation, or activation, a combination that is typical of cell type conversions often referred to as (direct or lineage) reprogramming. Thus, injury-induced Schwann cell reprogramming involves down-regulation of myelin genes combined with activation of a set of repair-supportive features, including up-regulation of trophic factors, elevation of cytokines as part of the innate immune response, myelin clearance by activation of myelin autophagy in Schwann cells and macrophage recruitment, and the formation of regeneration tracks, Bungner's bands, for directing axons to their targets. This repair programme is controlled transcriptionally by mechanisms involving the transcription factor c-Jun, which is rapidly up-regulated in Schwann cells after injury. In the absence of c-Jun, damage results in the formation of a dysfunctional repair cell, neuronal death and failure of functional recovery. c-Jun, although not required for Schwann cell development, is therefore central to the reprogramming of myelin and non-myelin (Remak) Schwann cells to repair cells after injury. In future, the signalling that specifies this cell requires further analysis so that pharmacological tools that boost and maintain the repair Schwann cell phenotype can be developed.


Sujet(s)
Régénération nerveuse/physiologie , Cellules de Schwann/physiologie , Animaux , Humains , Gaine de myéline/physiologie , Maladies du système nerveux/physiopathologie
2.
Glia ; 56(12): 1263-70, 2008 Sep.
Article de Anglais | MEDLINE | ID: mdl-18484102

RÉSUMÉ

There is a strong current interest in the use of cell transplantation for the treatment of spinal cord injuries. We report here the novel and potentially useful properties of an early cell in the Schwann cell lineage, the Schwann cell precursor (SCP). The experiments reveal a striking difference between these cells and Schwann cells when transplanted into the CNS. Unlike Schwann cells, SCPs thrive in the CNS where they initially proliferate rapidly but then fall out of division, thus effectively filling up the large cystic cavities formed following crush injury, while avoiding tumor formation. By 8 weeks, SCPs had started to express S100beta protein, a marker that differentiates Schwann cells from SCPs and had formed an apparently stable, vascularized cell mass, which created a continuous cellular bridge across the cystic cavities. The formation of the surrounding glial scar was reduced by local spread of the transplanted cells into the surrounding CNS tissue, where the cells integrated intimately with astrocytes and attenuated the physical barrier they normally form. SCP transplantation also altered and reduced the expression of chondroitin sulfate proteoglycans around the injury site. Caudal to the SCP transplants there was a large increase in the number of axons, compared with that seen in nontransplanted control tissue, showing that the implants effectively support axonal growth or sprouting. SCPs have advantageous attributes for CNS repair, despite the fact that sticky tape removal and ladder crossing tests at 8 weeks did not reveal significant functional improvements when compared with control animals.


Sujet(s)
Axones/physiologie , Cellules de Schwann/transplantation , Traumatismes de la moelle épinière/chirurgie , Transplantation de cellules souches/méthodes , Cellules souches/cytologie , Cellules souches/physiologie , Animaux , Animal génétiquement modifié , Différenciation cellulaire/physiologie , Prolifération cellulaire , Transplantation cellulaire/méthodes , Cellules cultivées , Poulets , Femelle , Grossesse , Rats , Rat Sprague-Dawley , Cellules de Schwann/cytologie , Traumatismes de la moelle épinière/anatomopathologie
3.
Brain ; 130(Pt 8): 2175-85, 2007 Aug.
Article de Anglais | MEDLINE | ID: mdl-17550908

RÉSUMÉ

Cell transplant therapies are currently under active consideration for a number of degenerative diseases. In the immune-mediated demyelinating-neurodegenerative disease multiple sclerosis (MS), only the myelin sheaths of the CNS are lost, while Schwann cell myelin of the PNS remains normal. This, and the finding that Schwann cells can myelinate CNS axons, has focussed interest on Schwann cell transplants to repair myelin in MS. However, the experimental use of these cells for myelin repair in animal models has revealed a number of problems relating to the incompatibility between peripheral glial cells and the CNS glial environment. Here, we have tested whether these difficulties can be avoided by using an earlier stage of the Schwann cell lineage, the Schwann cell precursor (SCP). For direct comparison of these two cell types, we implanted Schwann cells from post-natal rat nerves and SCPs from embryo day 14 (E14) rat nerves into the CNS under various experimental conditions. Examination 1 and 2 months later showed that in the presence of naked CNS axons, both types of cell form myelin that antigenically and ultrastructurally resembles that formed by Schwann cells in peripheral nerves. In terms of every other parameter we studied, however, the cells in these two implants behaved remarkably differently. As expected from previous work, Schwann cell implants survive poorly unless the cells find axons to myelinate, the cells do not migrate significantly from the implantation site, fail to integrate with host oligodendrocytes and astrocytes, and form little myelin when challenged with astrocyte-rich environment in the retina. Following SCP implantation, on the other hand, the cells survive well, migrate through normal CNS tissue, interface smoothly and intimately with host glial cells and myelinate extensively among the astrocytes of the retina. Furthermore, when implanted at a distance from a demyelinated lesion, SCPs but not Schwann cells migrate through normal CNS tissue to reach the lesion and generate new myelin. These features of SCP implants are all likely to be helpful attributes for a myelin repair cell. Since these cells also form Schwann cell myelin that is arguably likely to be resistant to MS pathology, they share some of the main advantages of Schwann cells without suffering from the disadvantages that render Schwann cells less than ideal candidates for transplantation into MS lesions.


Sujet(s)
Sclérose en plaques/thérapie , Gaine de myéline/physiologie , Régénération nerveuse , Cellules de Schwann/transplantation , Transplantation de cellules souches/méthodes , Animaux , Astrocytes/physiologie , Mouvement cellulaire , Survie cellulaire , Femelle , Sclérose en plaques/physiopathologie , Rats , Rat Sprague-Dawley , Rétine/cytologie , Cellules de Schwann/cytologie , Cellules de Schwann/physiologie , Moelle spinale/cytologie
4.
J Anat ; 200(4): 367-76, 2002 Apr.
Article de Anglais | MEDLINE | ID: mdl-12090403

RÉSUMÉ

While the signals that direct neural crest cells to choose the glial lineage and generate Schwann cell precursors are still obscure, studies both in vivo and in vitro indicate that the survival and differentiation of these cells to form Schwann cells is regulated by at least two signals, neuregulin-1 and endothelin. We know little about the signals that cause some immature Schwann cells to choose myelin differentiation, while other cells form non-myelinating cells. Three transcription factors, Sox-10, Oct-6 and Krox-20, have been shown to play key roles in the Schwann cell lineage. The transcription factor Krox-20 has been identified as a major target of the signals that induce myelin differentiation. Gene transfer experiments in vitro show that this protein has a remarkable ability to promote a large number of phenotypic changes in immature Schwann cells that characterize the transition of these cells to myelinating cells. Furthermore, Krox-20 shows important functional interactions with neuregulin and transforming growth factor beta (TGFbeta), two factors that have been implicated in the regulation of myelination in postnatal nerves. Another signal of importance in developing peripheral nerves, Desert Hedgehog, secreted by Schwann cells directs formation of the peripheral nerve connective tissue sheaths. Ongoing gene screening experiments are likely to reveal new genes of interest in this system.


Sujet(s)
Induction embryonnaire/génétique , Gaine de myéline/physiologie , Crête neurale/cytologie , Cellules de Schwann/cytologie , Survie cellulaire , Protéines de liaison à l'ADN/génétique , Facteur de transcription EGR-2 , Endothélines/physiologie , Humains , Neuréguline-1/physiologie , Facteurs de transcription/génétique
5.
J Neurosci ; 21(21): 8572-85, 2001 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-11606645

RÉSUMÉ

In some situations, cell death in the nervous system is controlled by an interplay between survival factors and negative survival signals that actively induce apoptosis. The present work indicates that the survival of Schwann cells is regulated by such a dual mechanism involving the negative survival signal transforming growth factor beta (TGFbeta), a family of growth factors that is present in the Schwann cells themselves. We analyze the interactions between this putative autocrine death signal and previously defined paracrine and autocrine survival signals and show that expression of a dominant negative c-Jun inhibits TGFbeta-induced apoptosis. This and other findings pinpoint activation of c-Jun as a key downstream event in TGFbeta-induced Schwann cell death. The ability of TGFbeta to kill Schwann cells, like normal Schwann cell death in vivo, is under a strong developmental regulation, and we show that the decreasing ability of TGFbeta to kill older cells is attributable to a decreasing ability of TGFbeta to phosphorylate c-Jun in more differentiated cells.


Sujet(s)
Apoptose/physiologie , Mitogen-Activated Protein Kinases/métabolisme , Cellules de Schwann/métabolisme , Transduction du signal/physiologie , Facteur de croissance transformant bêta/métabolisme , Animaux , Animaux nouveau-nés , Anticorps bloquants/pharmacologie , Apoptose/effets des médicaments et des substances chimiques , Communication autocrine/physiologie , Axotomie , Numération cellulaire , Différenciation cellulaire/effets des médicaments et des substances chimiques , Différenciation cellulaire/physiologie , Survie cellulaire/effets des médicaments et des substances chimiques , Survie cellulaire/physiologie , Cellules cultivées , Relation dose-effet des médicaments , Régulation de l'expression des gènes au cours du développement , JNK Mitogen-Activated Protein Kinases , Laminine/pharmacologie , Neuréguline-1/métabolisme , Peptides/pharmacologie , Phosphorylation/effets des médicaments et des substances chimiques , ARN messager/métabolisme , Rats , Rat Sprague-Dawley , Récepteur facteur croissance/génétique , Récepteur facteur croissance/métabolisme , Cellules de Schwann/cytologie , Cellules de Schwann/effets des médicaments et des substances chimiques , Nerf ischiatique/effets des médicaments et des substances chimiques , Nerf ischiatique/physiologie , Transduction du signal/effets des médicaments et des substances chimiques , Transcription génétique/effets des médicaments et des substances chimiques , Transfection , Facteur de croissance transformant bêta/génétique , Facteur de croissance transformant bêta/pharmacologie
7.
Eur J Neurosci ; 14(2): 363-72, 2001 Jul.
Article de Anglais | MEDLINE | ID: mdl-11553286

RÉSUMÉ

There is now evidence from in vivo and in vitro studies that the rate of Schwann cell generation is regulated by the balance of two opposing signals, beta neuregulins and endothelins. The beta neuregulins promote the development of precursors to Schwann cells whereas endothelins retard it through an action on endothelin-B receptors. The present work has shown additional controls of this transition, and implicates AP-2 transcription factors, in particular AP-2 alpha, as negative regulators of Schwann cell generation. We found that both AP-2 alpha and AP-2 gamma are present in early embryonic nerves, whereas AP-2 beta was not. Isoform-specific analysis of AP-2 alpha showed that isoform 3 was most abundant with isoforms 1 and 2 present in lesser amounts; isoform 4 was absent. Maximal AP-2 alpha and AP-2 gamma mRNA expression occurred at embryonic day (E) 12/13 in the mouse and at E14/15 in the rat, which correlates with the presence of Schwann cell precursors in the nerve. In both rats and in mice, in vivo and in vitro, downregulation of AP-2 alpha mRNA and protein coincided with one of the main steps in Schwann cell development, the precursor-Schwann cell transition. Moreover, Schwann cell generation was delayed if this downregulation was prevented by enforced expression of AP-2 alpha in precursors. These studies suggest that AP-2 is involved in the control of the timing of Schwann cell development.


Sujet(s)
Différenciation cellulaire/génétique , Protéines de liaison à l'ADN/génétique , Régulation de l'expression des gènes au cours du développement/physiologie , Nerfs périphériques/embryologie , Cellules de Schwann/métabolisme , Cellules souches/métabolisme , Facteurs de transcription/génétique , Animaux , Axones/métabolisme , Axotomie , Lignage cellulaire/génétique , Cellules cultivées , Protéines de liaison à l'ADN/déficit , Régulation négative/génétique , Foetus , Immunohistochimie , Souris , Souris de lignée ICR , Souris knockout/embryologie , Souris knockout/croissance et développement , Souris knockout/métabolisme , Nerfs périphériques/croissance et développement , Nerfs périphériques/métabolisme , Isoformes de protéines/génétique , Isoformes de protéines/métabolisme , ARN messager/métabolisme , Rats , Rat Sprague-Dawley , Protéines S100/métabolisme , Cellules de Schwann/cytologie , Cellules souches/cytologie , Facteur de transcription AP-2 , Facteurs de transcription/déficit
8.
Dev Dyn ; 222(1): 40-51, 2001 Sep.
Article de Anglais | MEDLINE | ID: mdl-11507768

RÉSUMÉ

The myelin protein P(0) has a major structural role in Schwann cell myelin, and the expression of P(0) protein and mRNA in the Schwann cell lineage has been extensively documented. We show here, using in situ hybridization, that the P(0) gene is also activated in a number of other tissues during embryonic development. P(0) mRNA is first detectable in 10-day-old embryos (E10) and is at this time seen only in cells in the cephalic neural crest and in the otic placode/pit. P(0) expression continues in the otic vesicle and at E12 P(0) expression in this structure largely overlaps with expression of another myelin gene, proteolipid protein. In the developing ear at E14, P(0) expression is complementary to expression of serrate and c-ret mRNAs, which later are expressed in sensory areas of the inner ear, while expression of bone morphogenetic protein (BMP)-4 and P(0), though largely complementary, shows small areas of overlap. P(0) mRNA and protein are detectable in the notochord from E10 to at least E13. In addition to P(0) expression in a subpopulation of trunk crest cells at E11/E12 and in Schwann cell precursors thereafter, P(0) mRNA is also present transiently in a subpopulation of cells migrating in the enteric neural crest pathway, but is down-regulated in these cells at E14 and thereafter. P(0) is also detected in the placode-derived olfactory ensheathing cells from E13 and is maintained in the adult. No signal is seen in cells in the melanocyte migration pathway or in TUJ1 positive neuronal cells in tissue sections. The activation of the P(0) gene in specific tissues outside the nervous system was unexpected. It remains to be determined whether this is functionally significant, or whether it is an evolutionary relic, perhaps reflecting ancestral use of P(0) as an adhesion molecule.


Sujet(s)
Protéines de Drosophila , Oreille interne/métabolisme , Système nerveux entérique/métabolisme , Protéine P0 de la myéline/biosynthèse , Chorde/métabolisme , Voies olfactives/métabolisme , Animaux , Adhérence cellulaire , Lignage cellulaire , Mouvement cellulaire , ADN complémentaire/métabolisme , Régulation négative , Oreille interne/embryologie , Système nerveux entérique/embryologie , Immunohistochimie , Hybridation in situ , Système nerveux/embryologie , Crête neurale/cytologie , Crête neurale/métabolisme , Névroglie/cytologie , Névroglie/métabolisme , Chorde/embryologie , Voies olfactives/embryologie , Protéines proto-oncogènes/métabolisme , Protéines proto-oncogènes c-ret , ARN messager/métabolisme , Rats , Récepteurs à activité tyrosine kinase/métabolisme , Récepteur ErbB-3/biosynthèse , Cellules de Schwann/métabolisme , Transduction du signal , Estomac/innervation , Facteurs temps
9.
Glia ; 34(1): 39-51, 2001 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-11284018

RÉSUMÉ

Neuregulins constitute a family of related growth factors that play important roles in Schwann cell development and maturation. We investigated the involvement of beta-neuregulin in Schwann cell migration, using a simple in vitro bioassay. Pure Schwann cells were prepared from the sciatic nerves of 5-day-old rats and were grown in defined medium, with or without serum, until a monolayer of confluent cells was formed. A cell-free area was then generated by inflicting a scratch resulting in a 1-mm-wide gap. Schwann cell migration within the gap was monitored microscopically at given time intervals and was quantified using an image analysis system. The extent of cell proliferation was estimated by BrdU incorporation, and cell migration was quantified both in the absence and presence of cytosine arabinoside. We found that, in the absence of serum, beta-neuregulin at a dose submaximal for proliferation increased the rate of Schwann cell migration by 84%. A more moderate effect was observed when beta-neuregulin was applied in the presence of serum which, however, is by itself responsible for increased Schwann cell motility. To assess the signal transduction pathways involved in this procedure we used one inhibitor of MAPK, PD098059, two inhibitors of PI-3-kinase, wortmannin, and LY0294002, and three different PKC inhibitors. Of these PD098059 inhibited the neuregulin-induced enhancement in Schwann cell migration by 40%, the two PI-3-kinase inhibitors yielded an approximately 20% inhibition while the PKC inhibitors were ineffective. Our data indicate that the action of beta-neuregulin on Schwann cell motility is primarily mediated via the MAPK pathway.


Sujet(s)
Mouvement cellulaire/effets des médicaments et des substances chimiques , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Neuréguline-1/pharmacologie , Cellules de Schwann/effets des médicaments et des substances chimiques , Nerf ischiatique/effets des médicaments et des substances chimiques , Animaux , Mouvement cellulaire/physiologie , Cellules cultivées , Milieux de culture sans sérum/pharmacologie , Antienzymes/pharmacologie , Système de signalisation des MAP kinases/physiologie , Rats , Rat Wistar , Protéines S100/pharmacologie , Cellules de Schwann/physiologie , Nerf ischiatique/cytologie , Nerf ischiatique/physiologie , Tubuline/pharmacologie
10.
Dev Biol ; 227(2): 545-57, 2000 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-11071773

RÉSUMÉ

Schwann cell precursors, derivatives of the neural crest, generate Schwann cells in a process that is tightly timed, well characterized, and directly controlled by axonal signals, in particular beta-neuregulins. Here we provide evidence that endothelins (ETs) are also important for survival and lineage progression in this system. We show that ETs promote rat Schwann cell precursor survival in vitro without stimulation of DNA synthesis. Using ET receptor agonists and antagonists, we demonstrate that this action of ET is mediated by the ET(B) receptor. RT-PCR reveals the presence of ET and ET receptor mRNA in the developing rat PNS. We showed previously that in vitro beta-neuregulins promote the generation of Schwann cells from precursors on schedule and that this process can be accelerated by fibroblast growth factor 2. Here we show that although ETs promote long-term precursor survival the transition of precursors to Schwann cells is delayed. Moreover, ETs block the maturation effects of beta-neuregulins. In spotting lethal rats, in which functional ET(B) receptors are absent, we find accelerated expression of the Schwann cell marker S100 in developing nerves. These observations indicate that complex growth factor interactions control the timing of Schwann cell development in embryonic nerves and that ETs act as negative regulators of Schwann cell generation.


Sujet(s)
Endothélines/physiologie , Cellules de Schwann/cytologie , Animaux , Apoptose , Différenciation cellulaire , Survie cellulaire , Endothéline-1 , Endothélines/génétique , Délétion de gène , Régulation de l'expression des gènes au cours du développement , Techniques in vitro , Crête neurale/cytologie , Neurégulines/pharmacologie , Nerfs périphériques/cytologie , Nerfs périphériques/croissance et développement , Nerfs périphériques/métabolisme , Précurseurs de protéines/génétique , ARN messager/génétique , ARN messager/métabolisme , Rats , Rat Sprague-Dawley , Récepteur endothéline/génétique , Transduction du signal , Cellules souches/cytologie
11.
Ann N Y Acad Sci ; 883: 109-15, 1999 Sep 14.
Article de Anglais | MEDLINE | ID: mdl-10586236

RÉSUMÉ

Schwann cell precursors in embryonic nerves rely for survival on signals from the axons they associate with. A major component of this signal is beta neuregulin. While it can be argued that such paracrine axonal regulation makes biological sense in embryonic nerves, such an arrangement would be problematic postnatally, since nerve damage would then lead to Schwann cell death with adverse consequences for regeneration; in fact, transection of older nerves is not accompanied by a detectable increase in Schwann cell death. Our evidence indicates that this is, at least in part, due to the ability of Schwann cells to support their own survival by autocrine circuits. These circuits are not present in Schwann cell precursors. We have identified insulin-like growth factor, neurotrophin-3 and platelet-derived growth factor-BB as components of the autocrine Schwann cell survival signal.


Sujet(s)
Axones/physiologie , Cellules de Schwann/cytologie , Cellules de Schwann/physiologie , Animaux , Axones/ultrastructure , Survie cellulaire , Développement embryonnaire et foetal , Substances de croissance/physiologie , Humains , Cellules de Schwann/anatomopathologie
12.
Ann N Y Acad Sci ; 883: 196-202, 1999 Sep 14.
Article de Anglais | MEDLINE | ID: mdl-10586245

RÉSUMÉ

Reciprocal signaling between axons and Schwann cells during development is well established. The contribution of Schwann cells to the formation and maintenance of the protective nerve sheaths (endo-, peri-, and epineurium) has been less studied. Although mesenchymal cells contribute to all these structures, only perineurial cells contribute to the diffusion barrier between nerves and surrounding tissues. During development, prospective perineurial cells shift from a mesenchymal to epithelial phenotype, forming concentric layers of cells around the nerve fascicles that collectively form a barrier against unwanted molecules and cellular infiltration. We have studied the role of Schwann cells in the formation and maintenance of this barrier. The signaling molecule Desert hedgehog is expressed in Schwann cell precursors, and in Schwann cells until at least postnatal day 10, while its receptor patched is seen in mesenchymal cells surrounding the developing nerve at embryo day 15. In Desert hedgehog knockout mice, the connective tissue sheaths in adult nerves appear highly abnormal by electron microscopy. There is almost no epineurium, and the perineurium is thin and highly abnormal. In addition, perineurial-like cells invade the endoneurial space, forming mini-fascicles around small bundles of nerve fibers similar to those seen in regenerating nerves. Functional tests reveal that the diffusion and cellular infiltration barrier is compromised, demonstrating that Desert hedgehog signaling from Schwann cells to the mesenchyme is involved in the formation of a morphologically and functionally normal perineurium.


Sujet(s)
Gaine de myéline/physiologie , Protéines/physiologie , Cellules de Schwann/physiologie , Transactivateurs , Vieillissement , Animaux , Tissu conjonctif/innervation , Induction embryonnaire , Développement embryonnaire et foetal , Protéines Hedgehog , Mésoderme/cytologie , Mésoderme/physiologie , Souris , Souris knockout , Gaine de myéline/génétique , Protéines/génétique , Cellules souches/physiologie
13.
Neuron ; 23(4): 713-24, 1999 Aug.
Article de Anglais | MEDLINE | ID: mdl-10482238

RÉSUMÉ

We show that Schwann cell-derived Desert hedgehog (Dhh) signals the formation of the connective tissue sheath around peripheral nerves. mRNAs for dhh and its receptor patched (ptc) are expressed in Schwann cells and perineural mesenchyme, respectively. In dhh-/- mice, epineurial collagen is reduced, while the perineurium is thin and disorganized, has patchy basal lamina, and fails to express connexin 43. Perineurial tight junctions are abnormal and allow the passage of proteins and neutrophils. In nerve fibroblasts, Dhh upregulates ptc and hedgehog-interacting protein (hip). These experiments reveal a novel developmental signaling pathway between glia and mesenchymal connective tissue and demonstrate its molecular identity in peripheral nerve. They also show that Schwann cell-derived signals can act as important regulators of nerve development.


Sujet(s)
Tissu conjonctif/croissance et développement , Protéines membranaires/biosynthèse , Nerfs périphériques/croissance et développement , Biosynthèse des protéines , Cellules de Schwann/physiologie , Transactivateurs , Animaux , Protéines de transport/biosynthèse , Protéines de transport/génétique , Collagène/métabolisme , Tissu conjonctif/ultrastructure , Connexine 43/biosynthèse , Connexine 43/génétique , Protéines Hedgehog , Immunohistochimie , Hybridation in situ , Protéines et peptides de signalisation intracellulaire , Glycoprotéines membranaires/biosynthèse , Glycoprotéines membranaires/génétique , Protéines membranaires/génétique , Souris , Souris knockout , Microscopie électronique , Névroglie/physiologie , Récepteurs patched , Récepteur Patched-1 , Nerfs périphériques/métabolisme , Nerfs périphériques/ultrastructure , Protéines/génétique , ARN messager/biosynthèse , ARN messager/génétique , Récepteurs de surface cellulaire , RT-PCR , Cellules de Schwann/ultrastructure , Transduction du signal/génétique , Transduction du signal/physiologie , Régulation positive/génétique
14.
Trends Neurosci ; 22(9): 402-10, 1999 Sep.
Article de Anglais | MEDLINE | ID: mdl-10441301

RÉSUMÉ

It is becoming ever clearer that Schwann cells and Schwann-cell precursors are an important source of developmental signals in embryonic and neonatal nerves. This article reviews experiments showing that these signals regulate the survival and differentiation of other cells in early nerves. The evidence indicates that glial-derived signals are necessary for neuronal survival at crucial periods of development, that they regulate the molecular and functional specialization of axons and that they control the maturation of the perineurial sheath that protects nerves from inflammation and unwanted macro-molecules produced in the surrounding tissues. Furthermore, an autocrine survival circuit enables Schwann cells in postnatal nerves to survive in the absence of axons, a vital requirement for successful nerve regeneration following injury. The molecular identity of these signals and their receptors is currently being determined.


Sujet(s)
Communication autocrine/physiologie , Développement embryonnaire et foetal/physiologie , Phénomènes physiologiques du système nerveux , Système nerveux/embryologie , Cellules de Schwann/physiologie , Animaux , Division cellulaire , Survie cellulaire , Humains , Régénération nerveuse/physiologie , Tissu nerveux/croissance et développement , Cellules de Schwann/ultrastructure
15.
J Neurosci ; 19(10): 3847-59, 1999 May 15.
Article de Anglais | MEDLINE | ID: mdl-10234017

RÉSUMÉ

Although Schwann cell precursors from early embryonic nerves die in the absence of axonal signals, Schwann cells in older nerves can survive in the absence of axons in the distal stump of transected nerves. This is crucially important, because successful axonal regrowth in a damaged nerve depends on interactions with living Schwann cells in the denervated distal stump. Here we show that Schwann cells acquire the ability to survive without axons by establishing an autocrine survival loop. This mechanism is absent in precursors. We show that insulin-like growth factor, neurotrophin-3, and platelet-derived growth factor-BB are important components of this autocrine survival signal. The secretion of these factors by Schwann cells has significant implications for cellular communication in developing nerves, in view of their known ability to regulate survival and differentiation of other cells including neurons.


Sujet(s)
Axones/physiologie , Facteurs de croissance nerveuse/physiologie , Facteur de croissance dérivé des plaquettes/physiologie , Cellules de Schwann/physiologie , Somatomédines/physiologie , Animaux , Réaction antigène-anticorps , Communication autocrine/physiologie , Bécaplermine , Calcium-Calmodulin-Dependent Protein Kinases/métabolisme , Survie cellulaire/physiologie , Milieux de culture conditionnés , Glycoprotéines/pharmacologie , Neurégulines , Neurotrophine-3 , Protéines proto-oncogènes c-sis , Rats , Rat Sprague-Dawley , Protéines recombinantes/métabolisme , Cellules de Schwann/ultrastructure , Nerf ischiatique/traumatismes , Nerf ischiatique/métabolisme
16.
J Neurosci Res ; 56(4): 334-48, 1999 May 15.
Article de Anglais | MEDLINE | ID: mdl-10340742

RÉSUMÉ

Previously we proposed that Schwann cell development from the neural crest is a two-step process that involves the generation of one main intermediate cell type, the Schwann cell precursor. Until now Schwann cell precursors have only been identified in the rat, and much remains to be learned about these cells and how they generate Schwann cells. Here we identify this cell in the mouse and analyze its transition to form Schwann cells in terms of timing, molecular expression, and extracellular signals and intracellular pathways involved in survival, proliferation, and differentiation. In the mouse, the transition from precursors to Schwann cells takes place 2 days earlier than in the rat, i.e., between embryo days 12/13 and 15/16, and is accompanied by the appearance of the 04 antigen and the establishment of an autocrine survival circuit. Beta neuregulins block precursor apoptosis and support Schwann cell generation in vitro, a process that is accelerated by basic fibroblast growth factor 2. The development of Schwann cells from precursors also involves a change in the intracellular survival signals utilized by neuregulins: To block precursor death neuregulins need to signal through both the mitogen-activated protein kinase and the phosphoinositide-3-kinase pathways although neuregulins support Schwann cell survival by signaling through the phosphoinositide-3-kinase pathway alone. Last, we describe the generation of precursor cultures from single 12-day-old embryos, a prerequisite for culture studies of genetically altered precursors when embryos are non-identical with respect to the transgene in question.


Sujet(s)
Cellules de Schwann/cytologie , Nerf ischiatique/embryologie , Cellules souches/cytologie , Animaux , Apoptose/effets des médicaments et des substances chimiques , Communication autocrine , Calcium-Calmodulin-Dependent Protein Kinases/antagonistes et inhibiteurs , Calcium-Calmodulin-Dependent Protein Kinases/métabolisme , Différenciation cellulaire/effets des médicaments et des substances chimiques , Division cellulaire/effets des médicaments et des substances chimiques , Lignage cellulaire/effets des médicaments et des substances chimiques , Séparation cellulaire , Survie cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , ADN/biosynthèse , Embryon de mammifère/cytologie , Embryon de mammifère/innervation , Facteur de croissance fibroblastique de type 2/pharmacologie , Glycoprotéines/pharmacologie , Substances de croissance/analyse , Membre pelvien/embryologie , Membre pelvien/innervation , Souris , Neurégulines , Phosphatidylinositol 3-kinases/métabolisme , Inhibiteurs des phosphoinositide-3 kinases , Cellules de Schwann/effets des médicaments et des substances chimiques , Nerf ischiatique/cytologie , Cellules souches/effets des médicaments et des substances chimiques
17.
Brain Pathol ; 9(2): 293-311, 1999 Apr.
Article de Anglais | MEDLINE | ID: mdl-10219747

RÉSUMÉ

This selective review of Schwann cell biology focuses on questions relating to the origins, development and differentiation of Schwann cells and the signals that control these processes. The importance of neuregulins and their receptors in controlling Schwann cell precursor survival and generation of Schwann cells, and the role of these molecules in Schwann cell biology is addressed. The reciprocal signalling between peripheral glial cells and neurons in development and adult life revealed in recent years is highlighted, and the profound change in survival regulation from neuron-dependent Schwann cell precursors to adult Schwann cells that depend on autocrine survival signals is discussed. Besides providing neuronal and autocrine signals, Schwann cells signal to mesenchymal cells and influence the development of the connective tissue sheaths of peripheral nerves. The importance of Desert Hedgehog in this process is described. The control of gene expression during Schwann cell development and differentiation by transcription factors is reviewed. Knockout of Oct-6 and Krox-20 leads to delay or absence of myelination, and these results are related to morphological or physiological observations on knockout or mutation of myelin-related genes. Finally, the relationship between selected extracellular matrix components, integrins and the cytoskeleton is explored and related to disease.


Sujet(s)
Nerfs périphériques/physiologie , Neuropathies périphériques/physiopathologie , Cellules de Schwann/physiologie , Adulte , Vieillissement , Animaux , Développement embryonnaire et foetal , Glycoprotéines/physiologie , Humains , Facteurs de croissance nerveuse/physiologie , Neurégulines , Neurones/physiologie , Nerfs périphériques/physiopathologie , Récepteur ErbB-2 , Récepteurs facteur croissance nerf/physiologie
19.
Ann N Y Acad Sci ; 883(1): 109-115, 1999 Oct.
Article de Anglais | MEDLINE | ID: mdl-29086917

RÉSUMÉ

Schwann cell precursors in embryonic nerves rely for survival on signals from the axons they associate with. A major component of this signal is ß neuregulin. While it can be argued that such paracrine axonal regulation makes biological sense in embryonic nerves, such an arrangement would be problematic postnatally, since nerve damage would then lead to Schwann cell death with adverse consequences for regeneration; in fact, transection of older nerves is not accompanied by a detectable increase in Schwann cell death. Our evidence indicates that this is, at least in part, due to the ability of Schwann cells to support their own survival by autocrine circuits. These circuits are not present in Schwann cell precursors. We have identified insulin-like growth factor, neurotrophin-3 and platelet-derived growth factor-BB as components of the autocrine Schwann cell survival signal.

20.
Microsc Res Tech ; 41(5): 393-402, 1998 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-9672422

RÉSUMÉ

Cellular events leading to the generation of Schwann cells from the neural crest have recently been clarified and it is now possible to outline a relatively simple model of the Schwann cell lineage in the rat and mouse. Neural crest cells have to undergo three main developmental transitions to become mature Schwann cells. These are the formation of Schwann cell precursors from crest cells, the formation of immature Schwann cells from precursors and, lastly, the postnatal and reversible generation of non-myelin- and myelin-forming Schwann cells. Axonal signals involving neuregulins are important regulators of these events, in particular of the survival, proliferation, and differentiation of Schwann cell precursors. Transcription factors likely to be involved in the developmental transitions are beginning to be identified. These include Oct-6, Krox-20, and Pax-3 but also members of the basic helix-loop-helix family, Sox 10, and the cAMP response element binding protein CREB.


Sujet(s)
Crête neurale/cytologie , Cellules de Schwann/cytologie , Animaux , Différenciation cellulaire , Survie cellulaire/physiologie , Glycoprotéines/physiologie , Souris , Microscopie de contraste de phase , Facteurs de croissance nerveuse/physiologie , Neurégulines , Rats , Cellules de Schwann/ultrastructure , Nerf ischiatique/physiologie , Nerf ischiatique/ultrastructure , Facteurs de transcription/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE