Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Sensors (Basel) ; 24(9)2024 May 06.
Article de Anglais | MEDLINE | ID: mdl-38733061

RÉSUMÉ

Urban areas are undergoing significant changes with the rise of smart cities, with technology transforming how cities develop through enhanced connectivity and data-driven services. However, these advancements also bring new challenges, especially in dealing with urban emergencies that can disrupt city life and infrastructure. The emergency management systems have become crucial elements for enabling cities to better handle urban emergencies, although ensuring the reliability and detectability of such system remains critical. This article introduces a new method to perform reliability and detectability assessments. By using Fault Tree Markov chain models, this article evaluates their performance under extreme conditions, providing valuable insights for designing and operating urban emergency systems. These analyses fill a gap in the existing research, offering a comprehensive understanding of emergency management systems functionality in complex urban settings.

2.
Sensors (Basel) ; 20(22)2020 Nov 16.
Article de Anglais | MEDLINE | ID: mdl-33207709

RÉSUMÉ

In critical industrial monitoring and control applications, dependability evaluation will be usually required. For wireless sensor networks deployed in industrial plants, dependability evaluation can provide valuable information, enabling proper preventive or contingency measures to assure their correct and safe operation. However, when employing sensor nodes equipped with cameras, visual coverage failures may have a deep impact on the perceived quality of industrial applications, besides the already expected impacts of hardware and connectivity failures. This article proposes a comprehensive mathematical model for dependability evaluation centered on the concept of Quality of Monitoring (QoM), processing availability, reliability and effective coverage parameters in a combined way. Practical evaluation issues are discussed and simulation results are presented to demonstrate how the proposed model can be applied in wireless industrial sensor networks when assessing and enhancing their dependability.

3.
Sensors (Basel) ; 18(8)2018 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-30103452

RÉSUMÉ

Wireless sensor networks have been considered as an effective solution to a wide range of applications due to their prominent characteristics concerning information retrieving and distributed processing. When visual information can be also retrieved by sensor nodes, applications acquire a more comprehensive perception of monitored environments, fostering the creation of wireless visual sensor networks. As such networks are being more often considered for critical monitoring and control applications, usually related to catastrophic situation prevention, security enhancement and crises management, fault tolerance becomes a major expected service for visual sensor networks. A way to address this issue is to evaluate the system dependability through quantitative attributes (e.g., reliability and availability), which require a proper modeling strategy to describe the system behavior. That way, in this paper, we propose a methodology to model and evaluate the dependability of wireless visual sensor networks using Fault Tree Analysis and Markov Chains. The proposed modeling strategy considers hardware, battery, link and coverage failures, besides considering routing protocols on the network communication behavior. The methodology is automated by a framework developed and integrated with the SHARPE (Symbolic Hierarchical Automated Reliability and Performance Evaluator) tool. The achieved results show that this methodology is useful to compare different network implementations and the corresponding dependability, enabling the uncovering of potentially weak points in the network behavior.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE