Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 122
Filtrer
1.
Nat Commun ; 15(1): 4755, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38834568

RÉSUMÉ

Non-alcoholic steatohepatitis (NASH) is a severe type of the non-alcoholic fatty liver disease (NAFLD). NASH is a growing global health concern due to its increasing morbidity, lack of well-defined biomarkers and lack of clinically effective treatments. Using metabolomic analysis, the most significantly changed active lipid sphingosine d18:1 [So(d18:1)] is selected from NASH patients. So(d18:1) inhibits macrophage HIF-2α as a direct inhibitor and promotes the inflammatory factors secretion. Male macrophage-specific HIF-2α knockout and overexpression mice verified the protective effect of HIF-2α on NASH progression. Importantly, the HIF-2α stabilizer FG-4592 alleviates liver inflammation and fibrosis in NASH, which indicated that macrophage HIF-2α is a potential drug target for NASH treatment. Overall, this study confirms that So(d18:1) promotes NASH and clarifies that So(d18:1) inhibits the transcriptional activity of HIF-2α in liver macrophages by suppressing the interaction of HIF-2α with ARNT, suggesting that macrophage HIF-2α may be a potential target for the treatment of NASH.


Sujet(s)
Facteurs de transcription à motif basique hélice-boucle-hélice , Macrophages , Souris knockout , Stéatose hépatique non alcoolique , Sphingosine , Stéatose hépatique non alcoolique/métabolisme , Stéatose hépatique non alcoolique/traitement médicamenteux , Stéatose hépatique non alcoolique/anatomopathologie , Stéatose hépatique non alcoolique/génétique , Animaux , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Mâle , Macrophages/métabolisme , Macrophages/effets des médicaments et des substances chimiques , Humains , Souris , Sphingosine/analogues et dérivés , Sphingosine/métabolisme , Foie/métabolisme , Foie/anatomopathologie , Foie/effets des médicaments et des substances chimiques , Souris de lignée C57BL , Translocateur nucléaire du récepteur des hydrocarbures aromatiques/métabolisme , Translocateur nucléaire du récepteur des hydrocarbures aromatiques/génétique , Cirrhose du foie/métabolisme , Cirrhose du foie/traitement médicamenteux , Cirrhose du foie/anatomopathologie , Cirrhose du foie/génétique , Modèles animaux de maladie humaine
2.
Cell Host Microbe ; 32(6): 964-979.e7, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38754418

RÉSUMÉ

The gut microbiota is closely linked to atherosclerosis. However, the role of intestinal fungi, essential members of the complex microbial community, in atherosclerosis is poorly understood. Herein, we show that gut fungi dysbiosis is implicated in patients with dyslipidemia, characterized by higher levels of Candida albicans (C. albicans), which are positively correlated with plasma total cholesterol and low-density lipoprotein-cholesterol (LDL-C) levels. Furthermore, C. albicans colonization aggravates atherosclerosis progression in a mouse model of the disease. Through gain- and loss-of-function studies, we show that an intestinal hypoxia-inducible factor 2α (HIF-2α)-ceramide pathway mediates the effect of C. albicans. Mechanistically, formyl-methionine, a metabolite of C. albicans, activates intestinal HIF-2α signaling, which drives increased ceramide synthesis to accelerate atherosclerosis. Administration of the HIF-2α selective antagonist PT2385 alleviates atherosclerosis in mice by reducing ceramide levels. Our findings identify a role for intestinal fungi in atherosclerosis progression and highlight the intestinal HIF-2α-ceramide pathway as a target for atherosclerosis treatment.


Sujet(s)
Athérosclérose , Facteurs de transcription à motif basique hélice-boucle-hélice , Candida albicans , Céramides , Transduction du signal , Animaux , Candida albicans/métabolisme , Athérosclérose/microbiologie , Athérosclérose/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Souris , Humains , Céramides/métabolisme , Modèles animaux de maladie humaine , Souris de lignée C57BL , Mâle , Microbiome gastro-intestinal/physiologie , Intestins/microbiologie , Intestins/anatomopathologie , Dysbiose/microbiologie , Femelle , Candidose/microbiologie , Candidose/métabolisme
3.
Nat Metab ; 6(5): 947-962, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38769396

RÉSUMÉ

Polycystic ovary syndrome (PCOS), an endocrine disorder afflicting 6-20% of women of reproductive age globally, has been linked to alterations in the gut microbiome. We previously showed that in PCOS, elevation of Bacteroides vulgatus in the gut microbiome was associated with altered bile acid metabolism. Here we show that B. vulgatus also induces a PCOS-like phenotype in female mice via an alternate mechanism independent of bile acids. We find that B. vulgatus contributes to PCOS-like symptoms through its metabolite agmatine, which is derived from arginine by arginine decarboxylase. Mechanistically, agmatine activates the farnesoid X receptor (FXR) pathway to subsequently inhibit glucagon-like peptide-1 (GLP-1) secretion by L cells, which leads to insulin resistance and ovarian dysfunction. Critically, the GLP-1 receptor agonist liraglutide and the arginine decarboxylase inhibitor difluoromethylarginine ameliorate ovarian dysfunction in a PCOS-like mouse model. These findings reveal that agmatine-FXR-GLP-1 signalling contributes to ovarian dysfunction, presenting a potential therapeutic target for PCOS management.


Sujet(s)
Agmatine , Microbiome gastro-intestinal , Syndrome des ovaires polykystiques , Récepteurs cytoplasmiques et nucléaires , Syndrome des ovaires polykystiques/traitement médicamenteux , Syndrome des ovaires polykystiques/métabolisme , Animaux , Femelle , Souris , Agmatine/pharmacologie , Agmatine/métabolisme , Agmatine/usage thérapeutique , Récepteurs cytoplasmiques et nucléaires/agonistes , Récepteurs cytoplasmiques et nucléaires/métabolisme , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Glucagon-like peptide 1/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Modèles animaux de maladie humaine , Insulinorésistance , Bacteroides/effets des médicaments et des substances chimiques , Humains , Carboxy-lyases/métabolisme
4.
Nat Metab ; 6(6): 1161-1177, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38698281

RÉSUMÉ

Diabetic cardiomyopathy is characterized by myocardial lipid accumulation and cardiac dysfunction. Bile acid metabolism is known to play a crucial role in cardiovascular and metabolic diseases. Takeda G-protein-coupled receptor 5 (TGR5), a major bile acid receptor, has been implicated in metabolic regulation and myocardial protection. However, the precise involvement of the bile acid-TGR5 pathway in maintaining cardiometabolic homeostasis remains unclear. Here we show decreased plasma bile acid levels in both male and female participants with diabetic myocardial injury. Additionally, we observe increased myocardial lipid accumulation and cardiac dysfunction in cardiomyocyte-specific TGR5-deleted mice (both male and female) subjected to a high-fat diet and streptozotocin treatment or bred on the diabetic db/db genetic background. Further investigation reveals that TGR5 deletion enhances cardiac fatty acid uptake, resulting in lipid accumulation. Mechanistically, TGR5 deletion promotes localization of CD36 on the plasma membrane through the upregulation of CD36 palmitoylation mediated by the palmitoyl acyltransferase DHHC4. Our findings indicate that the TGR5-DHHC4 pathway regulates cardiac fatty acid uptake, which highlights the therapeutic potential of targeting TGR5 in the management of diabetic cardiomyopathy.


Sujet(s)
Cardiomyopathies diabétiques , Acides gras , Récepteurs couplés aux protéines G , Animaux , Récepteurs couplés aux protéines G/métabolisme , Récepteurs couplés aux protéines G/génétique , Cardiomyopathies diabétiques/métabolisme , Souris , Mâle , Femelle , Acides gras/métabolisme , Humains , Souris knockout , Acides et sels biliaires/métabolisme , Alimentation riche en graisse , Antigènes CD36/métabolisme , Antigènes CD36/génétique , Myocarde/métabolisme , Métabolisme lipidique , Myocytes cardiaques/métabolisme , Diabète expérimental/métabolisme
5.
Mol Metab ; 84: 101944, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38642891

RÉSUMÉ

High-fat diet (HFD) has long been recognized as risk factors for the development and progression of ulcerative colitis (UC), but the exact mechanism remained elusive. Here, HFD increased intestinal deoxycholic acid (DCA) levels, and DCA further exacerbated colonic inflammation. Transcriptome analysis revealed that DCA triggered ferroptosis pathway in colitis mice. Mechanistically, DCA upregulated hypoxia-inducible factor-2α (HIF-2α) and divalent metal transporter-1 (DMT1) expression, causing the ferrous ions accumulation and ferroptosis in intestinal epithelial cells, which was reversed by ferroptosis inhibitor ferrostatin-1. DCA failed to promote colitis and ferroptosis in intestine-specific HIF-2α-null mice. Notably, byak-angelicin inhibited DCA-induced pro-inflammatory and pro-ferroptotic effects through blocking the up-regulation of HIF-2α by DCA. Moreover, fat intake was positively correlated with disease activity in UC patients consuming HFD, with ferroptosis being more pronounced. Collectively, our findings demonstrated that HFD exacerbated colonic inflammation by promoting DCA-mediated ferroptosis, providing new insights into diet-related bile acid dysregulation in UC.


Sujet(s)
Acide désoxycholique , Alimentation riche en graisse , Ferroptose , Souris de lignée C57BL , Animaux , Acide désoxycholique/métabolisme , Acide désoxycholique/pharmacologie , Acide désoxycholique/effets indésirables , Alimentation riche en graisse/effets indésirables , Ferroptose/effets des médicaments et des substances chimiques , Souris , Mâle , Humains , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Inflammation/métabolisme , Colite/métabolisme , Colite/induit chimiquement , Colite/anatomopathologie , Côlon/métabolisme , Côlon/anatomopathologie , Rectocolite hémorragique/métabolisme , Rectocolite hémorragique/induit chimiquement , Rectocolite hémorragique/anatomopathologie , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Souris knockout
6.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-38653239

RÉSUMÉ

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Sujet(s)
Akkermansia (genre) , Bacteroides , Acides et sels biliaires , Microbiome gastro-intestinal , Stéatose hépatique non alcoolique , Symbiose , Animaux , Humains , Mâle , Souris , Akkermansia (genre)/métabolisme , Bacteroides/métabolisme , bêta-Lactamases/métabolisme , Acides et sels biliaires/métabolisme , Voies de biosynthèse/génétique , Stéatose hépatique/métabolisme , Foie/métabolisme , Souris de lignée C57BL , Verrucomicrobia/métabolisme , Stéatose hépatique non alcoolique/métabolisme , Stéatose hépatique non alcoolique/microbiologie
9.
Adv Sci (Weinh) ; 11(21): e2309525, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38460165

RÉSUMÉ

Metabolic abnormalities contribute to the pathogenesis of obesity and its complications. Yet, the understanding of the interactions between critical metabolic pathways that underlie obesity remains to be improved, in part owing to the lack of comprehensive metabolomics studies that reconcile data from both hydrophilic and lipophilic metabolome analyses that can lead to the identification and characterization of key signaling networks. Here, the study conducts a comprehensive metabolomics analysis, surveying lipids and hydrophilic metabolites of the plasma and omental adipose tissue of obese individuals and the plasma and epididymal adipose tissue of mice. Through these approaches, it is found that a significant accumulation of ceramide due to inhibited sphingolipid catabolism, while a significant reduction in the levels of uridine monophosphate (UMP), is critical to pyrimidine biosynthesis. Further, it is found that UMP administration restores sphingolipid homeostasis and can reduce obesity in mice by reversing obesity-induced inhibition of adipocyte hypoxia inducible factor 2a (Hif2α) and its target gene alkaline ceramidase 2 (Acer2), so as to promote ceramide catabolism and alleviate its accumulation within cells. Using adipose tissue Hif2α-specific knockout mice, the study further demonstrates that the presence of UMP can alleviate obesity through a HIF2α-ACER2-ceramide pathway, which can be a new signaling axis for obesity improvement.


Sujet(s)
Facteurs de transcription à motif basique hélice-boucle-hélice , Céramides , Obésité , Transduction du signal , Animaux , Obésité/métabolisme , Obésité/génétique , Céramides/métabolisme , Souris , Transduction du signal/effets des médicaments et des substances chimiques , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Mâle , Alkaline Ceramidase/métabolisme , Alkaline Ceramidase/génétique , Modèles animaux de maladie humaine , Humains , Souris knockout , Souris de lignée C57BL , Métabolomique/méthodes
10.
Nat Chem Biol ; 2024 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-38413746

RÉSUMÉ

Intracellular recognition of lipopolysaccharide (LPS) by mouse caspase-11 or human caspase-4 is a vital event for the activation of the noncanonical inflammasome. Whether negative regulators are involved in intracellular LPS sensing is still elusive. Here we show that adipose triglyceride lipase (ATGL) is a negative regulator of the noncanonical inflammasome. Through screening for genes participating in the noncanonical inflammasome, ATGL is identified as a negative player for intracellular LPS signaling. ATGL binds LPS and catalyzes the removal of the acylated side chains that contain ester bonds. LPS with under-acylated side chains no longer activates the inflammatory caspases. Cells with ATGL deficiency exhibit enhanced immune responses when encountering intracellular LPS, including an elevated secretion of interleukin-1ß, decreased cell viability and increased cell cytotoxicity. Moreover, ATGL-deficient mice show exacerbated responses to endotoxin challenges. Our results uncover that ATGL degrades cytosolic LPS to suppress noncanonical inflammasome activation.

11.
J Am Chem Soc ; 146(6): 3974-3983, 2024 02 14.
Article de Anglais | MEDLINE | ID: mdl-38299512

RÉSUMÉ

Biologics, including proteins and antisense oligonucleotides (ASOs), face significant challenges when it comes to achieving intracellular delivery within specific organs or cells through systemic administrations. In this study, we present a novel approach for delivering proteins and ASOs to liver cells, both in vitro and in vivo, using conjugates that tether N-acetylated galactosamine (GalNAc)-functionalized, cell-penetrating polydisulfides (PDSs). The method involves the thiol-bearing cargo-mediated ring-opening polymerization of GalNAc-functionalized lipoamide monomers through the so-called aggregation-induced polymerization, leading to the formation of site-specific protein/ASO-PDS conjugates with narrow dispersity. The hepatocyte-selective intracellular delivery of the conjugates arises from a combination of factors, including first GalNAc binding with ASGPR receptors on liver cells, leading to cell immobilization, and the subsequent thiol-disulfide exchange occurring on the cell surface, promoting internalization. Our findings emphasize the critical role of the close proximity of the PDS backbone to the cell surface, as it governs the success of thiol-disulfide exchange and, consequently, cell penetration. These conjugates hold tremendous potential in overcoming the various biological barriers encountered during systemic and cell-specific delivery of biomacromolecular cargos, opening up new avenues for the diagnosis and treatment of a range of liver-targeting diseases.


Sujet(s)
Produits biologiques , Galactosamine , Galactosamine/composition chimique , Hépatocytes/métabolisme , Oligonucléotides antisens/composition chimique , Disulfures/métabolisme , Thiols/métabolisme , Produits biologiques/métabolisme
13.
Sci China Life Sci ; 67(5): 854-864, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38265598

RÉSUMÉ

Tobacco smoking is a prevalent and detrimental habit practiced worldwide, increasing the risk of various diseases, including chronic obstructive pulmonary disease (COPD), cardiovascular disease, liver disease, and cancer. Although previous research has explored the detrimental health effects of tobacco smoking, recent studies suggest that gut microbiota dysbiosis may play a critical role in these outcomes. Numerous tobacco smoke components, such as nicotine, are found in the gastrointestinal tract and interact with gut microbiota, leading to lasting impacts on host health and diseases. This review delves into the ways tobacco smoking and its various constituents influence gut microbiota composition and functionality. We also summarize recent advancements in understanding how tobacco smoking-induced gut microbiota dysbiosis affects host health. Furthermore, this review introduces a novel perspective on how changes in gut microbiota following smoking cessation may contribute to withdrawal syndrome and the degree of health improvements in smokers.


Sujet(s)
Dysbiose , Microbiome gastro-intestinal , Fumer du tabac , Humains , Fumer du tabac/effets indésirables , Dysbiose/microbiologie , Nicotine/effets indésirables , Nicotine/métabolisme , Animaux , Tube digestif/microbiologie , Arrêter de fumer , Broncho-pneumopathie chronique obstructive/microbiologie , Broncho-pneumopathie chronique obstructive/étiologie
14.
Nat Microbiol ; 9(2): 434-450, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38233647

RÉSUMÉ

A strong correlation between gut microbes and host health has been observed in numerous gut metagenomic cohort studies. However, the underlying mechanisms governing host-microbe interactions in the gut remain largely unknown. Here we report that the gut commensal Christensenella minuta modulates host metabolism by generating a previously undescribed class of secondary bile acids with 3-O-acylation substitution that inhibit the intestinal farnesoid X receptor. Administration of C. minuta alleviated features of metabolic disease in high fat diet-induced obese mice associated with a significant increase in these acylated bile acids, which we refer to as 3-O-acyl-cholic acids. Specific knockout of intestinal farnesoid X receptor in mice counteracted the beneficial effects observed in their wild-type counterparts. Finally, we showed that 3-O-acyl-CAs were prevalent in healthy humans but significantly depleted in patients with type 2 diabetes. Our findings indicate a role for C. minuta and acylated bile acids in metabolic diseases.


Sujet(s)
Acides et sels biliaires , Diabète de type 2 , Humains , Animaux , Souris , Clostridiales , Alimentation riche en graisse
15.
Biosens Bioelectron ; 247: 115935, 2024 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-38128319

RÉSUMÉ

Long-chain fatty acyl-CoAs (LCACoAs) are intermediates in lipid metabolism that exert a wide range of cellular functions. However, our knowledge about the subcellular distribution and regulatory impacts of LCACoAs is limited by a lack of methods for detecting LCACoAs in living cells and tissues. Here, we report our development of LACSerHR, a genetically encoded fluorescent biosensor that enables precise measurement of subtle fluctuations in the levels of endogenous LCACoAs in vivo. LACSerHR significantly improve the fluorescent brightness and analyte affinity, in vitro and in vivo testing showcased LACSerHR's large dynamic range. We demonstrate LACSerHR's capacity for real-time evaluation of LCACoA levels in specific subcellular compartments, for example in response to disruption of ACSL enzyme function in HEK293T cells. Moreover, we show the application of LACSerHR for sensitive measurement of elevated LCACoA levels in the livers of mouse models for two common metabolic diseases (NAFLD and type 2 diabetes). Thus, our LACSerHR sensor is a powerful, broadly applicable tool for studying LCACoAs metabolism and disease.


Sujet(s)
Techniques de biocapteur , Diabète de type 2 , Humains , Souris , Animaux , Diabète de type 2/métabolisme , Cellules HEK293 , Foie , Métabolisme lipidique , Acyl coenzyme A/métabolisme
16.
Nat Metab ; 5(11): 1953-1968, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37857730

RÉSUMÉ

Metabolic regulation is integral to the proper functioning of innate lymphoid cells, yet the underlying mechanisms remain elusive. Here, we show that disruption of exogenous proline uptake, either through dietary restriction or by deficiency of the proline transporter Slc6a7, in lymphoid tissue inducer (LTi) cells, impairs LTi activation and aggravates dextran sodium sulfate-induced colitis in mice. With an integrative transcriptomic and metabolomic analysis, we profile the metabolic characteristics of various innate lymphoid cell subsets and reveal a notable enrichment of proline metabolism in LTi cells. Mechanistically, defective proline uptake diminishes the generation of reactive oxygen species, previously known to facilitate LTi activation. Additionally, LTi cells deficient in Slc6a7 display downregulation of Cebpb and Kdm6b, resulting in compromised transcriptional and epigenetic regulation of interleukin-22. Furthermore, our study uncovers the therapeutic potential of proline supplementation in alleviating colitis. Therefore, these findings shed light on the role of proline in facilitating LTi activation and ultimately contributing to gut homeostasis.


Sujet(s)
Colite , Immunité innée , Souris , Animaux , Épigenèse génétique , Lymphocytes , Tissu lymphoïde , Lymphocytes T auxiliaires , Colite/induit chimiquement , Homéostasie
17.
Pharmacol Res ; 196: 106930, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37722518

RÉSUMÉ

Postmenopausal osteoporosis is a common bone metabolic disease, and gut microbiota (GM) imbalance plays an important role in the development of metabolic bone disease. Here, we show that ovariectomized mice had high levels of lipopolysaccharide in serum and gut microbiota dysbiosis through increases in luminal Firmicutes:Bacteroidetes ratio. We depleted the GM through antibiotic treatment and observed improvements in bone mass, bone microstructure, and bone strength in ovariectomized mice. Conversely, transplantation of GM adapted to ovariectomy induced bone loss. However, GM depletion reversed ovariectomy-induced gene expression in the tibia and increased periosteal bone formation. Furthermore, bioinformatics analysis revealed that the G-protein-coupled bile acid receptor (TGR5) and systemic inflammatory factors play key roles in bone metabolism. Silencing TGR5 expression through small interfering RNA (siRNA) in the local tibia and knockout of TGR5 attenuated the effects of GM depletion in ovariectomized mice, confirming these findings. Thus, this study highlights the critical role of the GM in inducing bone loss in ovariectomized mice and suggests that targeting TGR5 within the GM may have therapeutic potential for postmenopausal osteoporosis.


Sujet(s)
Microbiome gastro-intestinal , Ostéoporose post-ménopausique , Humains , Femelle , Souris , Animaux , Ostéoporose post-ménopausique/traitement médicamenteux , Récepteurs couplés aux protéines G/métabolisme , Densité osseuse , Oestrogènes/usage thérapeutique
18.
J Clin Invest ; 133(20)2023 10 16.
Article de Anglais | MEDLINE | ID: mdl-37651203

RÉSUMÉ

Lung cancer progression relies on angiogenesis, which is a response to hypoxia typically coordinated by hypoxia-inducible transcription factors (HIFs), but growing evidence indicates that transcriptional programs beyond HIFs control tumor angiogenesis. Here, we show that the redox-sensitive transcription factor BTB and CNC homology 1 (BACH1) controls the transcription of a broad range of angiogenesis genes. BACH1 is stabilized by lowering ROS levels; consequently, angiogenesis gene expression in lung cancer cells, tumor organoids, and xenograft tumors increased substantially following administration of vitamins C and E and N-acetylcysteine in a BACH1-dependent fashion under normoxia. Moreover, angiogenesis gene expression increased in endogenous BACH1-overexpressing cells and decreased in BACH1-knockout cells in the absence of antioxidants. BACH1 levels also increased upon hypoxia and following administration of prolyl hydroxylase inhibitors in both HIF1A-knockout and WT cells. BACH1 was found to be a transcriptional target of HIF1α, but BACH1's ability to stimulate angiogenesis gene expression was HIF1α independent. Antioxidants increased tumor vascularity in vivo in a BACH1-dependent fashion, and overexpressing BACH1 rendered tumors sensitive to antiangiogenesis therapy. BACH1 expression in tumor sections from patients with lung cancer correlated with angiogenesis gene and protein expression. We conclude that BACH1 is an oxygen- and redox-sensitive angiogenesis transcription factor.


Sujet(s)
Antioxydants , Facteurs de transcription à motif basique et à glissière à leucines , Tumeurs du poumon , Humains , Antioxydants/pharmacologie , Facteurs de transcription à motif basique et à glissière à leucines/génétique , Facteurs de transcription à motif basique et à glissière à leucines/métabolisme , Hypoxie , Tumeurs du poumon/génétique , Tumeurs du poumon/métabolisme , Néovascularisation pathologique/génétique , Néovascularisation pathologique/métabolisme , Animaux , Souris
19.
Science ; 381(6657): eadd5787, 2023 08 04.
Article de Anglais | MEDLINE | ID: mdl-37535747

RÉSUMÉ

A mechanistic understanding of how microbial proteins affect the host could yield deeper insights into gut microbiota-host cross-talk. We developed an enzyme activity-screening platform to investigate how gut microbiota-derived enzymes might influence host physiology. We discovered that dipeptidyl peptidase 4 (DPP4) is expressed by specific bacterial taxa of the microbiota. Microbial DPP4 was able to decrease the active glucagon like peptide-1 (GLP-1) and disrupt glucose metabolism in mice with a leaky gut. Furthermore, the current drugs targeting human DPP4, including sitagliptin, had little effect on microbial DPP4. Using high-throughput screening, we identified daurisoline-d4 (Dau-d4) as a selective microbial DPP4 inhibitor that improves glucose tolerance in diabetic mice.


Sujet(s)
Bacteroides , Diabète de type 2 , Dipeptidyl peptidase 4 , Inhibiteurs de la dipeptidyl-peptidase IV , Microbiome gastro-intestinal , Interactions hôte-microbes , Hypoglycémiants , Animaux , Humains , Souris , Bacteroides/effets des médicaments et des substances chimiques , Bacteroides/enzymologie , Bacteroides/génétique , Diabète de type 2/enzymologie , Diabète de type 2/microbiologie , Dipeptidyl peptidase 4/métabolisme , Inhibiteurs de la dipeptidyl-peptidase IV/pharmacologie , Inhibiteurs de la dipeptidyl-peptidase IV/usage thérapeutique , Fèces/microbiologie , Glucagon-like peptide 1/métabolisme , Glucose/métabolisme , Isoenzymes/métabolisme , Phosphate de sitagliptine/pharmacologie , Phosphate de sitagliptine/usage thérapeutique , Hypoglycémiants/pharmacologie , Hypoglycémiants/usage thérapeutique
20.
NPJ Sci Food ; 7(1): 36, 2023 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-37460578

RÉSUMÉ

A high-methionine (HM) diet leads to hyperhomocysteinemia (HHcy), while gastrointestinal tissue is an important site of net homocysteine (Hcy) production. However, the role of the gut microbiota in host HHcy remains obscure. This study aimed to determine whether gut microbiota ablation could alleviate host HHcy and glucose intolerance and reveal the underlying mechanism. The results showed that the HM diet-induced HHcy and glucose intolerance in mice, while antibiotic administration decreased the plasma level of Hcy and reversed glucose intolerance. HM diet increased intestinal epithelial homocysteine levels, while antibiotic treatment decreased intestinal epithelial homocysteine levels under the HM diet. Gut microbiota depletion had no effect on the gene expression and enzyme activity of CBS and BHMT in the livers of HM diet-fed mice. The HM diet altered the composition of the gut microbiota with marked increases in the abundances of Faecalibaculum and Dubosiella, which were also positively correlated with plasma Hcy concentrations. An in-depth analysis of the bacterial cysteine and methionine metabolism pathways showed that the abundances of two homocysteine biosynthesis-related KEGG orthologies (KOs) were markedly increased in the gut microbiota in HM diet-fed mice. Hcy was detected from Dubosiella newyorkensis-cultured supernatant by liquid chromatography-tandem mass spectrometry (LC‒MS) analysis. In conclusion, these findings suggested that the HM diet-induced HHcy and glucose intolerance in mice, by reshaping the composition of the gut microbiota, which might produce and secrete Hcy.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...