Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Chemistry ; 22(10): 3470-3477, 2016 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-26841264

RÉSUMÉ

Metal-free catalysts are of great importance and alternative candidates to conventional metal-based catalysts for many reactions. Herein, several types of metal-organic frameworks have been exploited as templates/precursors to afford porous carbon materials with various nitrogen dopant forms and contents, degrees of graphitization, porosities, and surface areas. Amongst these materials, the PCN-224-templated porous carbon material optimized by pyrolysis at 700 °C (denoted as PCN-224-700) is composed of amorphous carbon coated with well-defined graphene layers, offering a high surface area, hierarchical pores, and high nitrogen content (mainly, pyrrolic nitrogen species). Remarkably, as a metal-free catalyst, PCN-224-700 exhibits a low activation energy and superior activity to most metallic catalysts in the catalytic reduction of 4-nitrophenol to 4-aminophenol. Theoretical investigations suggest that the content and type of the nitrogen dopant play crucial roles in determining the catalytic performance and that the pyrrolic nitrogen species makes the dominant contribution to this activity, which explains the excellent efficiency of the PCN-224-700 catalyst well.

2.
Inorg Chem ; 45(19): 7593-9, 2006 Sep 18.
Article de Anglais | MEDLINE | ID: mdl-16961350

RÉSUMÉ

Three new members in the family of nickel(II) tellurium(IV)/selenium(IV) oxyhalides generally formulated as Ni(n+1)(QO3)nX2 (Q = Te, X = Cl, n = 6, 10; Q = Se, X = Br, n = 4) have been synthesized by solid-state reactions of NiX2, QO2, and NiO (or Ni2O3) at high temperature. The structure of Ni7(TeO3)6Cl2 features a novel 3D network based on Ni4ClO3 cubane-like clusters with Te atoms located at the cavities of the network. Ni4ClO3 clusters are interconnected into a hexagonal layer through additional O...O edges. The neighboring two layers are further interconnected, via sharing of common Ni(II) atoms, into a novel 3D network. The 3D open framework of Ni5(SeO3)4Br2 is built from 2D nickel(II) oxybromide layers bridged by Se and additional Ni atoms. The structure of Ni11(TeO3)10Cl2 features a condensed 3D network based on NiO5Cl, NiO6, and NiO5 polyhedra interconnected via corner and edge sharing, as well as O-Te-O bridges. The results of magnetic property measurements indicate that all three compounds display antiferromagnetic interactions between nickel(II) centers.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE