Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Funct Plant Biol ; 48(6): 624-633, 2021 05.
Article de Anglais | MEDLINE | ID: mdl-33648626

RÉSUMÉ

Lignin is one of the most valuable renewable industrial materials. To elucidate the mechanism via which lignin is synthesised, we compared the lignin content, leaf hardness, cell wall thickness of palisade tissue, and gene expression patterns of lignin biosynthetic enzymes in three tobacco (Nicotiana tabacum L.) varieties during maturation. The results consistently showed that during maturation, the accumulation of lignin gradually increased in tobacco leaves, reaching a peak at full maturity (45 days after topping), and then gradually decreased. Similarly, the transcript level analysis revealed that the gene expression pattern of NtPAL, NtC4H, NtCCoAOMT and NtCOMT were relatively high, and consistent with the lignin content changes. Thus, the four genes may play regulatory roles in the synthesis of tobacco lignin. Analysis of tissue expression patterns of the lignin synthesis-related gene showed that the NtPAL, NtC4H, Nt4CL, NtHCT, NtCCoAOMT, NtCOMT, NtCCR, NtCAD, and NtPAO were all expressed in stems, roots, and leaves. NtC3H and NtF5H were specifically expressed in stems and roots, and not in leaves. Consistently, the NtC3H promoter induced high GUS expression in stems and petioles, marginal in roots, and no GUS activity in leaves. These results provide insights into molecular regulation of lignin biosynthesis in tobacco.


Sujet(s)
Lignine , Nicotiana , Régulation de l'expression des gènes végétaux , Lignine/métabolisme , Feuilles de plante/métabolisme , Végétaux génétiquement modifiés/métabolisme , Nicotiana/génétique
2.
BMC Genet ; 20(1): 35, 2019 03 19.
Article de Anglais | MEDLINE | ID: mdl-30890142

RÉSUMÉ

BACKGROUND: Heat shock proteins 90 (HSP90s) are a highly conserved protein family of cellular chaperones widely found in plants; they play a fundamental role in response to biotic and abiotic stresses. The genome-wide analysis of HSP90 gene family has been completed for some species; however, it has been rarely reported for the tobacco HSP90 genes. RESULTS: In this study, we systematically conducted genome-wide identification and expression analysis of the tobacco HSP90 gene family, including gene structures, evolutionary relationships, chromosomal locations, conserved domains, and expression patterns. Twenty-one NtHSP90s were identified and classified into eleven categories (NtHSP90-1 to NtHSP90-11) based on phylogenetic analysis. The conserved structures and motifs of NtHSP90 proteins in the same subfamily were highly consistent. Most NtHSP90 proteins contained the ATPase domain, which was closely related to conserved motif 2. Motif 5 was a low complexity sequence and had the function of signal peptide. At least 6 pairs of NtHSP90 genes underwent gene duplication, which arose from segment duplication and tandem duplication events. Phylogenetic analysis showed that most species expanded according to their own species-specific approach during the evolution of HSP90s. Dynamic expression analysis indicated that some NtHSP90 genes may play fundamental roles in regulation of abiotic stress response. The expression of NtHSP90-4, NtHSP90-5, and NtHSP90-9 were up-regulated, while NtHSP90-6, and NtHSP90-7 were not induced by ABA, drought, salt, cold and heat stresses. Among the five treatments, NtHSP90s were most strongly induced by heat stress, and weakly activated by ABA treatment. There was a similar response pattern of NtHSP90s under osmotic stress, or extreme temperature stress. CONCLUSIONS: This is the first genome-wide analysis of Hsp90 in N. tabacum. These results indicate that each NtHSP90 member fulfilled distinct functions in response to various abiotic stresses.


Sujet(s)
Analyse de profil d'expression de gènes , Régulation de l'expression des gènes végétaux , Génomique , Protéines du choc thermique HSP90/génétique , Nicotiana/génétique , Motifs d'acides aminés , Séquence conservée , Exons/génétique , Génome végétal/génétique , Protéines du choc thermique HSP90/composition chimique , Phylogenèse , Alignement de séquences , Stress physiologique/génétique , Nicotiana/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE