Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 239
Filtrer
1.
Dalton Trans ; 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38946522

RÉSUMÉ

In this work, PbSb2O6-type oxides LaMTeO6 (M = Ga3+ and Mn3+) were synthesized and structurally characterized by Rietveld refinements against high-resolution X-ray powder diffraction data. The Ga3+/Te6+ partial ordering within the honeycomb-like two-dimensional [GaTeO6]3- anionic layer leads to the loss of the inversion center between Ga3+ and Te6+; however the inversion center on the 3̄-roto-inversion axis is preserved, thereby resulting in a 2-fold PbSb2O6-type superstructure by doubling the c-axis associated with a structural symmetry descending from the original P3̄1m to P3̄1c symmetry. In contrast, LaMnTeO6 (P21/c) adopts a monoclinically distorted 4-fold superstructure with lattice dimensions of a ≈ aH, b ≈ √3aH, c ≈ 2cH, where aH and cH represent the lattice parameters of trigonal PbSb2O6. The formation of this P21/c-superstructure is attributed to the combination of complete Mn3+/Te6+ ordering and the first-order Jahn-Teller distortion of Mn3+ with the electronic configuration of d4. Such a monoclinic distortion can effectively lift the Mn3+ spin moments arranged on the triangular sublattice, resulting in a sharp peak for antiferromagnetic transition, which is in stark contrast to subtle magnetic transitions for PbSb2O6-type tellurates AMn(VI)TeO6 (A = alkaline earth and Pb2+) and LnCrTeO6 (Ln = rare earth) with higher structural symmetry. Our findings highlight that the electronic configuration effects of M-cations play a critical role in controlling the structure symmetry of LaMTeO6, providing a strategy to fine-tune the crystal structures and physical properties.

2.
Dalton Trans ; 53(26): 11133-11140, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38888270

RÉSUMÉ

The development of electrocatalysts that can maintain high reactivity and stability over a wide pH range during electrolysis reactions is essential for the realization of a clean hydrogen energy society. Herein, we report the synthesis of AuIr alloy nanoparticles (NPs) with an excellent oxygen evolution reaction (OER) performance over a wide pH range. The NPs were synthesized via an antisolvent crystallization-based method and maintained their small sizes regardless of adjustments in the ratio of the Au/Ir precursor. AuIr/C exhibited low overpotential and good long-term stability under acidic and alkaline conditions compared with the Ir/C and commercial RuO2. The enhanced OER performance of AuIr/C was attributed to efficient charge transfer, resulting in an optimal synergistic effect of electrons.

3.
Invest Ophthalmol Vis Sci ; 65(6): 2, 2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38829670

RÉSUMÉ

Purpose: The purpose of this study was to investigate the involvement of the TLR4/NF-κB/NLRP3 signaling pathway and its underlying mechanism in diabetic dry eye. Methods: Two models of diabetic dry eye were established in high glucose-induced human corneal epithelial (HCE-T) cells and streptozotocin (STZ)-induced C57BL/6 mice, and the TLR4 inhibitor fosfenopril (FOS) was utilized to suppress the TLR4/NF-κB/NLRP3 signaling pathway. The expression changes in TLR4, NF-κB, NLRP3, and IL-1ß, and other factors were detected by Western blot and RT‒qPCR, the wound healing rate was evaluated by cell scratch assay, and the symptoms of diabetic mice were evaluated by corneal sodium fluorescein staining and tear secretion assay. Results: In the diabetic dry eye model, the transcript levels of TLR4, NF-κB, NLRP3, and IL-1ß were raised, and further application of FOS, a TLR4 inhibitor, downregulated the levels of these pathway factors. In addition, FOS was found to be effective in increasing the wound healing rate of high glucose-induced HCE-T cells, increasing tear production, and decreasing corneal fluorescence staining scores in diabetic mice, as measured by cell scratch assay, corneal sodium fluorescein staining assay, and tear production. Conclusions: The current study found that the TLR4/NF-κB/NLRP3 signaling pathway regulates diabetic dry eye in an in vitro and in vivo model, and that FOS reduces the signs of dry eye in diabetic mice, providing a new treatment option for diabetic dry eye.


Sujet(s)
Diabète expérimental , Syndromes de l'oeil sec , Souris de lignée C57BL , Facteur de transcription NF-kappa B , Protéine-3 de la famille des NLR contenant un domaine pyrine , Transduction du signal , Récepteur de type Toll-4 , Animaux , Humains , Mâle , Souris , Technique de Western , Cellules cultivées , Diabète expérimental/traitement médicamenteux , Diabète expérimental/métabolisme , Modèles animaux de maladie humaine , Syndromes de l'oeil sec/traitement médicamenteux , Syndromes de l'oeil sec/métabolisme , Épithélium antérieur de la cornée/effets des médicaments et des substances chimiques , Épithélium antérieur de la cornée/métabolisme , Facteur de transcription NF-kappa B/métabolisme , Facteur de transcription NF-kappa B/antagonistes et inhibiteurs , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Protéine-3 de la famille des NLR contenant un domaine pyrine/antagonistes et inhibiteurs , Réaction de polymérisation en chaine en temps réel , Larmes/métabolisme , Récepteur de type Toll-4/métabolisme , Récepteur de type Toll-4/antagonistes et inhibiteurs
4.
J Am Coll Cardiol ; 83(24): 2440-2454, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38866447

RÉSUMÉ

BACKGROUND: Despite documented associations between social determinants of health and outcomes post-congenital heart surgery, clinical risk models typically exclude these factors. OBJECTIVES: The study sought to characterize associations between social determinants and operative and longitudinal mortality as well as assess impacts on risk model performance. METHODS: Demographic and clinical data were obtained for all congenital heart surgeries (2006-2021) from locally held Congenital Heart Surgery Collaborative for Longitudinal Outcomes and Utilization of Resources Society of Thoracic Surgeons Congenital Heart Surgery Database data. Neighborhood-level American Community Survey and composite sociodemographic measures were linked by zip code. Model prediction, discrimination, and impact on quality assessment were assessed before and after inclusion of social determinants in models based on the 2020 Society of Thoracic Surgeons Congenital Heart Surgery Database Mortality Risk Model. RESULTS: Of 14,173 total index operations across New York State, 12,321 cases, representing 10,271 patients at 8 centers, had zip codes for linkage. A total of 327 (2.7%) patients died in the hospital or before 30 days, and 314 children died by December 31, 2021 (total n = 641; 6.2%). Multiple measures of social determinants of health explained as much or more variability in operative and longitudinal mortality than clinical comorbidities or prior cardiac surgery. Inclusion of social determinants minimally improved models' predictive performance (operative: 0.834-0.844; longitudinal 0.808-0.811), but significantly improved model discrimination; 10.0% more survivors and 4.8% more mortalities were appropriately risk classified with inclusion. Wide variation in reclassification was observed by site, resulting in changes in the center performance classification category for 2 of 8 centers. CONCLUSIONS: Although indiscriminate inclusion of social determinants in clinical risk modeling can conceal inequities, thoughtful consideration can help centers understand their performance across populations and guide efforts to improve health equity.


Sujet(s)
Procédures de chirurgie cardiaque , Cardiopathies congénitales , Déterminants sociaux de la santé , Humains , Cardiopathies congénitales/chirurgie , Cardiopathies congénitales/mortalité , Mâle , Femelle , Procédures de chirurgie cardiaque/mortalité , Nourrisson , Enfant d'âge préscolaire , Appréciation des risques/méthodes , Enfant , Nouveau-né , État de New York/épidémiologie
5.
Foods ; 13(12)2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38928826

RÉSUMÉ

Chilled and cut chicken is preferred by consumers for its safeness and readiness to cook. To evaluate the quality characteristics of various chilled chicken products, differences in volatile organic components (VOCs) of six different cut parts (breast, back, leg, heart, liver, and gizzard) of Lueyang black chicken were characterized through gas chromatography-ion mobility spectroscopy (GC-IMS) combined with stoichiometry. A total of 54 peaks in the signal of VOCs were detected by GC-IMS, and 43 VOCs were identified by qualitative analysis. There were 22 aldehydes (20.66-54.07%), 8 ketones (25.74-62.87%), 9 alcohols (4.17-14.69%), 1 ether (0.18-2.22%), 2 esters (0.43-1.54%), and 1 furan (0.13-0.52%), in which aldehydes, ketones, and alcohols were the main categories. Among the six cut parts, the relative content of aldehydes (54.07%) was the highest in the gizzard, and the relative content of ketones (62.87%) was the highest in the heart. Meanwhile, the relative content of alcohols (14.69%) was the highest in the liver. Based on a stable and reliable predictive model established by orthogonal partial least squares-discriminant analysis (OPLS-DA), 3-hydroxy-2-butanone (monomer and dimer), acetone, 2-butanone monomer, hexanal (monomer and dimer), isopentyl alcohol monomer, and n-hexanol monomer were picked out as characteristic VOCs based on variable importance in projection (VIP value > 1.0, p < 0.05). Principal component analysis (PCA) and the clustering heatmap indicated that the characteristic VOCs could effectively distinguish the six cut parts of Lueyang black chicken. The specific VOCs responsible for flavor differences among six different cut parts of Lueyang black chicken were hexanal (monomer and dimer) for the gizzard, 2-butanone monomer and hexanal dimer for the breast, hexanal monomer for the back, 3-hydroxy-2-butanone monomer for the leg, 3-hydroxy-2-butanone (monomer and dimer) for the heart, and acetone and isopentyl alcohol monomer for the liver. These findings could reveal references for quality assessment and development of chilled products related to different cut parts of Lueyang black chicken in the future.

6.
Int J Biol Macromol ; 271(Pt 1): 131979, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38821812

RÉSUMÉ

A simple but robust strategy of ball milling (20 Hz, 30 Hz for 30 s, 60 s, 120 s, 180 s) was utilized to modify bamboo shoots fiber (BSDF) in shrimp surimi. The water holding capacity, swelling capacity, and oil binding capacity of 30 Hz-60 s milled BSDF exhibited the highest values of 5.61 g/g, 3.13 mL/g, and 6.93 g/g, significantly higher (P < 0.05) than untreated one (3.65 g/g, 2.03 mL/g, 4.57 g/g). Ball-milled BSDF exhibited a small-sized structure with the relative crystallinity decreased from 40.44 % (control) to 11.12 % (30 Hz-180 s). The myosin thermal stability, gelation properties of surimi were significantly enhanced by incorporating 20 Hz-120 s and 30 Hz-60 s BSDF via promoting protein unfolding, covalent hydrophobic interactions, and hydrogen bonding. A matrix-reinforcing and water entrapping effect was observed, exhibiting reinforced networks with down-sized water tunnels. However, BSDF modified at 180 s contributed to over-aggregated networks with fractures and enlarged gaps. Appropriate ball-milled BSDF (20 Hz-120 s, and 30 Hz-60 s) resulted in a significant decrease in α-helix (P < 0.05), accompanied by an increase of ß-sheets and ß-turn. This work could bring some insights into the applications of modified BSDF and its roles in the gelation of surimi-based food.


Sujet(s)
Fibre alimentaire , Animaux , Fibre alimentaire/analyse , Pousses de plante/composition chimique , Eau/composition chimique , Phénomènes chimiques , Myosines/composition chimique , Bambusa/composition chimique
7.
Food Chem X ; 22: 101325, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38699587

RÉSUMÉ

The flavor of algae was one of the key factors for consumer acceptance. The objective of this study was to investigate the characteristic volatile compounds in cooking and seasoned cooking edible brown seaweeds (Undaria pinnatifida and Laminaria japonica). The gas chromatography-ion mobility spectrometry (GC-IMS) and electronic nose (E-nose) analysis showed that baking resulted in significant difference in flavor of brown seaweeds. However, the overall effect of cooking was not as significant as that of the seasoning solution treatment. Additionally, brown seaweeds treated with the seasoning solution were more acceptable. Undaria pinnatifida was found to contain 72 volatile flavor compounds, while Laminaria japonica had a total of 70. This study proved the applicability of GC-IMS combined with E-nose technology to detect the changes of volatile components of brown seaweeds after processing, providing beneficial knowledge and basic theory for the deep processing of brown seaweeds.

8.
Talanta ; 275: 126135, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38677165

RÉSUMÉ

Hydrogen peroxide (H2O2) and viscosity play vital roles in the cellular environment as signaling molecule and microenvironment parameter, respectively, and are associated with many physiological and pathological processes in biological systems. We developed a near-infrared fluorescent probe, CQ, which performed colorimetric and ratiometric detection of H2O2 and viscosity based on the FRET mechanism, and was capable of monitoring changes in viscosity and H2O2 levels simultaneously through two different channels. Based on the specific reaction of H2O2 with borate ester, CQ exhibited a significant ratiometric response to H2O2 with a large Stokes shift of 221 nm, a detection limit of 0.87 µM, a near-infrared emission wavelength of 671 nm, a response time of 1 h, a wide detection ranges of 0.87-800 µM and a high energy transfer efficiency of 99.9 %. CQ could also recognize viscosity by the TICT mechanism, and efficiently detect viscosity changes caused by food thickeners. More importantly, CQ could successfully detect endogenous/exogenous H2O2 and viscosity in live HeLa cells, which was expected to be a practical tool for detecting H2O2 and viscosity in live cells.


Sujet(s)
Transfert d'énergie par résonance de fluorescence , Colorants fluorescents , Peroxyde d'hydrogène , Peroxyde d'hydrogène/analyse , Peroxyde d'hydrogène/composition chimique , Colorants fluorescents/composition chimique , Humains , Cellules HeLa , Transfert d'énergie par résonance de fluorescence/méthodes , Viscosité , Rayons infrarouges , Limite de détection , Survie cellulaire
9.
Food Chem ; 449: 139329, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-38615634

RÉSUMÉ

Cured Spanish mackerel has a promising market owing to its nutritious nature as well as ease of transportation and preservation. However, the nutritional and flavor formation mechanism of Spanish mackerel after curing and drying is unclear. To overcome this problem, the effects of different processing conditions on the free amino acid, microbial community, and flavor of Spanish mackerel were explored. Staphylococcus and Cobetia are the main microorganisms in cured mackerel and are closely associated with the formation of their quality. Compared with fresh mackerel, cured mackerel contains increased levels of protein, fat, and chloride, contributing to its distinctive flavor. The contents of free amino acids in the BA64 group were substantially higher than those in other groups, particularly the contents of threonine, glycine, and tyrosine. These findings will contribute to the development of high-quality cured Spanish mackerel products and cured aquatic products.


Sujet(s)
Acides aminés , Microbiote , Perciformes , Animaux , Acides aminés/analyse , Acides aminés/métabolisme , Acides aminés/composition chimique , Perciformes/microbiologie , Perciformes/métabolisme , Bactéries/métabolisme , Bactéries/classification , Bactéries/isolement et purification , Manipulation des aliments , Goût , Produits de la pêche/analyse , Produits de la pêche/microbiologie , Dessiccation , Conservation aliments/méthodes
10.
Bioelectron Med ; 10(1): 10, 2024 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-38594769

RÉSUMÉ

BACKGROUND: Glioblastoma (GBM) presents as an aggressive brain cancer, notorious for its recurrence and resistance to conventional treatments. This study aimed to assess the efficacy of the EMulate Therapeutics Voyager®, a non-invasive, non-thermal, non-ionizing, battery-operated, portable experimental medical device, in treating GBM. Using ultra-low radiofrequency energy (ulRFE) to modulate intracellular activity, previous preliminary results in patients have been encouraging. Now, with a focus on murine models, our investigation seeks to elucidate the device's mechanistic impacts, further optimizing its therapeutic potential and understanding its limitations. METHODS: The device employs a silicone over molded coil to deliver oscillating magnetic fields, which are believed to interact with and disrupt cellular targets. These fields are derived from the magnetic fluctuations of solvated molecules. Xenograft and syngeneic murine models were chosen for the study. Mice were injected with U-87 MG or GL261 glioma cells in their flanks and were subsequently treated with one of two ulRFE cognates: A1A, inspired by paclitaxel, or A2, based on murine siRNA targeting CTLA4 + PD1. A separate group of untreated mice was maintained as controls. RESULTS: Mice that underwent treatments with either A1A or A2 exhibited significantly reduced tumor sizes when compared to the untreated cohort. CONCLUSION: The EMulate Therapeutics Voyager® demonstrates promising potential in inhibiting glioma cells in vivo through its unique ulRFE technology and should be further studied in terms of biological effects in vitro and in vivo.

11.
J Transl Med ; 22(1): 368, 2024 Apr 18.
Article de Anglais | MEDLINE | ID: mdl-38637886

RÉSUMÉ

In this study, we investigated CD70 as a promising target for renal cell carcinoma (RCC) therapy and developed a potent chimeric antigen receptor T (CAR-T) cells for potential clinical testing. CD70, found to be highly expressed in RCC tumors, was associated with decreased survival. We generated CAR-T cells expressing VHH sequence of various novel nanobodies from immunized alpaca and a single-chain variable fragment (scFv) derived from human antibody (41D12). In our in vitro experiments, anti-CD70 CAR-T cells effectively eliminated CD70-positive tumor cells while sparing CD70-negative cells. The nanobody-based CAR-T cells demonstrated significantly higher production of cytokines such as IL-2, IFN-γ and TNF-ɑ during co-culture, indicating their potential for enhanced functionality. In xenograft mouse model, these CAR-T cells exhibited remarkable anti-tumor activity, leading to the eradication of RCC tumor cells. Importantly, human T cell expansion after infusion was significantly higher in the VHH groups compared to the scFv CAR-T group. Upon re-challenging mice with RCC tumor cells, the VHH CAR-T treated group remained tumor-free, suggesting a robust and long-lasting anti-tumor response. These findings provide strong support for the potential of nanobody-based CD70 CAR-T cells as a promising therapeutic option for RCC. This warrants further development and consideration for future clinical trials and applications.


Sujet(s)
Néphrocarcinome , Tumeurs du rein , Récepteurs chimériques pour l'antigène , Humains , Animaux , Souris , Néphrocarcinome/thérapie , Lymphocytes T , Lignée cellulaire tumorale , Tumeurs du rein/thérapie , Immunothérapie adoptive , Tests d'activité antitumorale sur modèle de xénogreffe , Antigènes CD70
12.
Article de Anglais | MEDLINE | ID: mdl-38652217

RÉSUMÉ

Thrombus age determination in fatal venous thromboembolism cases is an important task for forensic pathologists. In this study, we investigated the time-dependent expressions of formyl peptide receptor 2 (FPR2) and Annexin A1 (ANXA1) in a stasis-induced deep vein thrombosis (DVT) murine model, with the aim of obtaining useful information for thrombus age timing. A total of 75 ICR mice were randomly classified into thrombosis group and control group. In thrombosis group, a DVT model was established by ligating the inferior vena cava (IVC) of mice, and thrombosed IVCs were harvested at 1, 3, 5, 7, 10, 14, and 21 days after modeling. In control group, IVCs without thrombosis were taken as control samples. The expressions of FPR2 and ANXA1 during thrombosis were detected using immunohistochemistry and double immunofluorescence staining. Their protein and mRNA levels in the samples were determined by Western blotting and quantitative real-time PCR. The results reveal that FPR2 was predominantly expressed by intrathrombotic neutrophils and macrophages. ANXA1 expression in the thrombi was mainly distributed in neutrophils, endothelial cells of neovessels, and fibroblastic cells. After thrombosis, the expressions of FPR2 and ANXA1 were time-dependently up-regulated. The percentage of FPR2-positive cells and the level of FPR2 protein significantly elevated at 1, 3, 5 and 7 days after IVC ligation as compared to those at 10, 14 and 21 days after ligation (p < 0.05). Moreover, the mRNA level of FPR2 were significantly higher at 5 days than that at the other post-ligation intervals (p < 0.05). Besides, the levels of ANXA1 mRNA and protein peaked at 10 and 14 days after ligation, respectively. A significant increase in the mRNA level of ANXA1 was found at 10 and 14 days as compared with that at the other post-ligation intervals (p < 0.01). Our findings suggest that FPR2 and ANXA1 are promising as useful markers for age estimation of venous thrombi.

13.
Food Chem ; 448: 139075, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38531300

RÉSUMÉ

Sulfur-containing compounds are responsible for the aroma of Toona sinensis shoot (TS). In this study, vacuum-freeze-drying (VFD), microwave-drying (MD), and hot-air-drying at 100 and 40 °C (HAD100 and HAD40, respectively), were applied to dehydrate perishable TS for preservation. VFD-TS retained most aroma of fresh/raw TS after rehydration. The content of sulfur-containing compounds reached to 118.00 µg/g with leading by methyl thiirane, (E,E)/(E,Z)/(Z,Z)-bis-(1-propenyl) disulfides, and (Z)/(E)-2-mercapto-3,4-dimethyl-2,3-dihydrothiophenes accounting for 86.33 %. They were undetected in the rehydrated MD-TS and HAD100-TS, as the indigenous enzymes in TS were deactivated under their dehydration conditions. Interestingly, the sulfur-containing compounds was restored by 77.47 % after the TS was treated by gamma-glutamyl transferase (GGT). Thus, the release of sulfur-containing compounds from TS could depend on GGT reaction. It was different from alliaceous vegetables relying on alliinase reaction. The results revealed the aroma formation in TS and provided an approach to enhance the aroma of TS dried by different methods.


Sujet(s)
Dessiccation , gamma-Glutamyltransferase , Dessiccation/méthodes , gamma-Glutamyltransferase/métabolisme , Humains , Odorisants/analyse , Pousses de plante/composition chimique , Goût , Composés du soufre/composition chimique , Composés du soufre/analyse , Lyophilisation
14.
Medicine (Baltimore) ; 103(13): e37347, 2024 Mar 29.
Article de Anglais | MEDLINE | ID: mdl-38552080

RÉSUMÉ

BACKGROUND: Diabetic macular edema (DME) is the main cause of irreversible vision loss in patients with diabetes mellitus (DM), resulting in a certain burden to patients and society. With the increasing incidence of DME, more and more researchers are focusing on it. METHODS: The papers related to DME between 2012 and 2022 from the Web of Science core Collection were searched in this study. Based on CiteSpace and VOS viewer, these publications were analyzed in terms of spatiotemporal distribution, author distribution, subject classification, topic distribution, and citations. RESULTS: A total of 5165 publications on DME were included. The results showed that the research on DME is on a steady growth trend. The country with the highest number of published documents was the US. Wong Tien Yin from Tsinghua University was the author with the most published articles. The journal of Retina, the Journal of Retinal and Vitreous Diseases had a large number of publications. The article "Mechanisms of macular edema: Beyond the surface" was the highly cited literature and "Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema" had the highest co-citation frequency. The treatment, diagnosis, pathogenesis, as well as etiology and epidemiological investigation of DME, have been the current research direction. Deep learning has been widely used in the medical field for its strong feature representation ability. CONCLUSIONS: The study revealed the important authoritative literature, journals, institutions, scholars, countries, research hotspots, and development trends in in the field of DME. This indicates that communication and cooperation between disciplines, universities, and countries are crucial. It can advance research in DME and even ophthalmology.


Sujet(s)
Rétinopathie diabétique , Oedème maculaire , Humains , Rétinopathie diabétique/complications , Oedème maculaire/épidémiologie , Oedème maculaire/étiologie , Ranibizumab , Bévacizumab , Bibliométrie
15.
Polymers (Basel) ; 16(6)2024 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-38543405

RÉSUMÉ

Hydrogel polymer electrolytes (GPEs), as an important component of flexible energy storage devices, have gradually received wide attention compared with traditional liquid electrolytes due to their advantages of good mechanical, bending, and safety properties. In this paper, two cross-linked GPEs of poly(acrylic acid-co-acrylamide) or poly(acrylic acid-co-N-methylolacrylamide) with NaNO3 aqueous solution (P(AA-co-AM)/NaNO3 or P(AA-co-HAM)/NaNO3) were successfully prepared using radical polymerization, respectively, using acrylic acid (AA) as the monomer, N-methylolacrylamide (HAM) or acrylamide (AM) as the comonomer, and N, N-methylenebisacrylamide (MBAA) as the cross-linking agent. We investigated the morphology, glass transition temperature (Tg), ionic conductivities, mechanical properties, and thermal stabilities of the two GPEs. By comparison, P(AA-co-HAM)/NaNO3 GPE exhibits a higher ionic conductivity of 2.00 × 10-2 S/cm, lower Tg of 152 °C, and appropriate mechanical properties, which are attributed to the hydrogen bonding between the -COOH and -OH, and moderate cross-linking. The flexible symmetrical supercapacitors were assembled with the two GPEs and two identical activated carbon electrodes, respectively. The results show that the flexible supercapacitor with P(AA-co-HAM)/NaNO3 GPE shows good electrochemical performance with a specific capacitance of 63.9 F g-1 at a current density of 0.2 A g-1 and a capacitance retention of 89.4% after 3000 charge-discharge cycles. Our results provide a simple and practical design strategy of GPEs for flexible supercapacitors with wide application prospects.

16.
Dalton Trans ; 53(12): 5382-5390, 2024 Mar 19.
Article de Anglais | MEDLINE | ID: mdl-38415362

RÉSUMÉ

In this work, we report the structural and magnetic characterization of two new B-site rock-salt ordered double perovskites ALaCoTeO6 (A = K+ and Na+) with mixed A-site cations. KLaCoTeO6 crystallizes in the space group P4/nmm with a long-range ordering degree of 84.8% for the A-site K+/La3+ cations, whereas NaLaCoTeO6 adopts an unexpected triclinically distorted I1̄-structure with Na/La3+ disordering, validated by combined Rietveld refinements against high-resolution neutron diffraction data and Cu Kα1 X-ray powder diffraction data. Magnetic susceptibility at low temperatures shows clear antiferromagnetic (AFM) transitions for both compounds. KLaCoTeO6 exhibits the highest AFM transition temperature of 20 K amongst all the Co/Te-ordered 3C-type A2CoTeO6 (A = Pb2+, Sr2+, and Ca2+) and ALaCoTeO6 double perovskites due to its larger Co2+-O-Te6+ bond angle and A-site cationic ordering-induced larger distortion of the Co2+-based face-centered cubic sublattice. Moreover, we found that the average radius of the A-site cations plays a decisive role in the AFM transition temperatures of all these ordered double perovskites, that is, a larger A-site cation always results in a higher AFM transition temperature. This provides a strategy to subtly manipulate the magnetic properties of ordered double perovskites.

17.
ACS Appl Mater Interfaces ; 16(8): 11062-11075, 2024 Feb 28.
Article de Anglais | MEDLINE | ID: mdl-38378449

RÉSUMÉ

Green and biodegradable materials with great mechanical properties and biocompatibility will offer new opportunities for next-generation high-performance biological materials. Herein, the novel oriented shish kebab crystals of a novel poly(trimethylene carbonate-lactide-glycolide) (PTLG) vascular stent are first reported to be successfully fabricated through a feasible solid-state drawing process to simultaneously enhance the mechanical performance and biocompatibility. The crystal structure of this self-reinforced vascular stent was transformed from spherulites to a shish kebab crystal, which indicates the mechanical interlocking effect and prevents the lamellae from slipping with a significant improvement of mechanical strength to 333 MPa. Meanwhile, it is different from typical biomedical polymers with smooth surface structures, and the as-obtained PTLG vascular stent exhibits a bionic surface morphology with a parallel micro groove and ridge structure. These ridges and grooves were attributed to the reorganization of cytoskeleton fiber bundles following the direction of blood flow shear stress. The structure and parameters of these morphologies were highly similar to the inner surface of blood vessels of the human, which facilitates cell adhesion growth to improve its proliferation, differentiation, and activity on the surface of PTLG.


Sujet(s)
Polyesters , Ingénierie tissulaire , Humains , Polyesters/composition chimique , Bionique , Polymères/composition chimique , Endoprothèses
18.
Anal Chim Acta ; 1288: 342184, 2024 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-38220311

RÉSUMÉ

BACKGROUND: Sulfur dioxide (SO2) is a common gaseous pollutant that significantly threatens environmental pollution and human health. Meanwhile, viscosity is an essential parameter of the intracellular microenvironment, manipulating many physiological roles such as nutrient transport, metabolism, signaling regulation and apoptosis. Currently, most of the fluorescent probes used for detecting SO2 derivatives and viscosity are single-emission probes or probes based on the ICT mechanism, which suffer from short emission wavelengths, small Stokes shifts or susceptibility to environmental background. Therefore, the development of powerful high-performance probes for real-time monitoring of sulfur dioxide derivatives and viscosity is of great significance for human health. RESULTS: In this research, we designed the fluorescent probe QQC to detect SO2 derivatives and viscosity based on FRET platform with quinolinium salt as donor and quinolinium-carbazole as acceptor. QQC exhibited a ratiometric fluorescence response to SO2 with a low detection limit (0.09 µM), large Stokes shift (186 nm) and high energy transfer efficiency (95 %), indicating that probe QQC had good sensitivity and specificity. In addition, QQC was sensitive to viscosity, with an 9.10-folds enhancement of orange fluorescence and an excellent linear relationship (R2 = 0.98) between the logarithm of fluorescence intensity at 592 nm and viscosity. Importantly, QQC could not only recognize SO2 derivatives in real water samples and food, but also detect viscosity changes caused by food thickeners and thereby had broad market application prospects. SIGNIFICANCE: We have developed a ratiometric fluorescent probe based on the FRET platform for detecting sulfur dioxide derivatives and viscosity. QQC could not only successfully detect SO2 derivatives in food and water samples, but also be made into test strips for detecting HSO3-/SO32- solution. In addition, the probe was also used to detect viscosity changes caused by food thickeners. Therefore, this novel probe had significant value in food and environmental detection applications.


Sujet(s)
Colorants fluorescents , Dioxyde de soufre , Humains , Transfert d'énergie par résonance de fluorescence , Viscosité , Eau , Cellules HeLa
19.
Food Chem ; 442: 138456, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38271909

RÉSUMÉ

Breeding of tomato varieties based on phenotypic traits can potentially lead to a decline in taste and nutritional values, thereby impacting consumer acceptance. However, taste is an intrinsic characteristic of tomatoes. Its decoding requires the identification of crucial compounds and the associated metabolic pathways implicated in taste development and formation. In this study, the taste parameter differences of four tomato varieties were distinguished using an electronic tongue. The content of organic acids and free amino acids, which were closely associated with taste variations, was quantitatively analyzed. Several important taste metabolites and metabolic pathways were identified based on LC-MS metabolomics and enrichment analysis. Through correlation analysis, it was determined that there existed significant associations between the taste, compounds, and metabolites of tomato varieties with different phenotypes. This study could provide references and theoretical basis for tomato breeding, as well as the control and evaluation of taste and quality of tomato varieties.


Sujet(s)
Solanum lycopersicum , Solanum lycopersicum/génétique , , Goût , Chromatographie en phase liquide , Spectrométrie de masse en tandem , Amélioration des plantes , Métabolomique
20.
Food Chem X ; 21: 101126, 2024 Mar 30.
Article de Anglais | MEDLINE | ID: mdl-38292676

RÉSUMÉ

This study investigated the quality changes of dry salted mackerel during curing and drying process and the relationship between flavor substances and microorganisms. The results showed that the thiobarbituric acid reactive substances (TBARS) values increased gradually with the increase of salt concentration and treatment time. The total volatile base nitrogen (TVB-N) values and total viable counts (TVC) values showed the same trend. Under 3% condition, the TVB-N values exceeded the standard and was not suitable for consumption. A total of 61 volatile flavor substances were identified by Gas chromatography-ion mobility spectrometry (GC-IMS), among which aldehydes contributed the most. Staphylococcus and Cobetia were the most abundant by High-throughput sequencing (HTS). There was significant correlation between TOP15 microorganisms and TOP20 flavor substances. Staphylococcus and Cobetia were positively correlated with 13 volatile flavor substances, which contributed to the formation of flavor in naturally fermented Spanish mackerel.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...