Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 197
Filtrer
1.
Cell Death Dis ; 15(7): 507, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39013845

RÉSUMÉ

Liver transplantation (LT) rejection remains the most pervasive problem associated with this procedure, while the mechanism involved is still complicated and undefined. One promising solution may involve the use of myeloid-derived suppressor cells (MDSC). However, the immunological mechanisms underlying the effects of MDSC after LT remain unclear. This study is meant to clarify the role MDSCs play after liver transplantation. In this study, we collected liver tissue and peripheral blood mononuclear cells (PBMC) from LT patients showing varying degrees of rejection, as well as liver and spleen tissue samples from mice LT models. These samples were then analyzed using flow cytometry, immunohistochemistry and multiple immunofluorescence. M-MDSCs and CD8 + T-cells extracted from C57/BL6 mice were enriched and cocultured for in vitro experiments. Results, as obtained in both LT patients and LT mice model, revealed that the proportion and frequency of M-MDSC and PD-1 + T-cells increased significantly under conditions associated with a high degree of LT rejection. Within the LT rejection group, our immunofluorescence results showed that a close spatial contiguity was present between PD-1 + T-cells and M-MDSCs in these liver tissue samples and the proportion of CD84/PD-L1 double-positive M-MDSC was greater than that of G-MDSC. There was a positive correlation between the activity of CD84 and immunosuppressive function of M-MDSCs including PD-L1 expression and reactive oxygen species (ROS) production, as demonstrated in our in vitro model. M-MDSCs treated with CD84 protein were able to induce co-cultured CD8 + T-cells to express high levels of exhaustion markers. We found that CD84 regulated M-MDSC function via expression of PD-L1 through activation of the Akt/Stat3 pathway. These results suggest that the capacity for CD84 to regulate M-MDSC induction of CD8 + T-cell exhaustion may play a key role in LT rejection. Such findings provide important, new insights into the mechanisms of tolerance induction in LT.


Sujet(s)
Lymphocytes T CD8+ , Rejet du greffon , Transplantation hépatique , Souris de lignée C57BL , Cellules myéloïdes suppressives , Lymphocytes T CD8+/immunologie , Lymphocytes T CD8+/métabolisme , Animaux , Cellules myéloïdes suppressives/métabolisme , Cellules myéloïdes suppressives/immunologie , Rejet du greffon/immunologie , Humains , Souris , Mâle , Adulte d'âge moyen , Femelle , Adulte , Facteur de transcription STAT-3/métabolisme , Récepteur-1 de mort cellulaire programmée/métabolisme , Foie/anatomopathologie , Foie/métabolisme
2.
Fundam Res ; 4(3): 678-689, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38933195

RÉSUMÉ

Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype. Molecular stratification and target therapy bring clinical benefit for TNBC patients, but it is difficult to implement comprehensive molecular testing in clinical practice. Here, using our multi-omics TNBC cohort (N = 425), a deep learning-based framework was devised and validated for comprehensive predictions of molecular features, subtypes and prognosis from pathological whole slide images. The framework first incorporated a neural network to decompose the tissue on WSIs, followed by a second one which was trained based on certain tissue types for predicting different targets. Multi-omics molecular features were analyzed including somatic mutations, copy number alterations, germline mutations, biological pathway activities, metabolomics features and immunotherapy biomarkers. It was shown that the molecular features with therapeutic implications can be predicted including the somatic PIK3CA mutation, germline BRCA2 mutation and PD-L1 protein expression (area under the curve [AUC]: 0.78, 0.79 and 0.74 respectively). The molecular subtypes of TNBC can be identified (AUC: 0.84, 0.85, 0.93 and 0.73 for the basal-like immune-suppressed, immunomodulatory, luminal androgen receptor, and mesenchymal-like subtypes respectively) and their distinctive morphological patterns were revealed, which provided novel insights into the heterogeneity of TNBC. A neural network integrating image features and clinical covariates stratified patients into groups with different survival outcomes (log-rank P < 0.001). Our prediction framework and neural network models were externally validated on the TNBC cases from TCGA (N = 143) and appeared robust to the changes in patient population. For potential clinical translation, we built a novel online platform, where we modularized and deployed our framework along with the validated models. It can realize real-time one-stop prediction for new cases. In summary, using only pathological WSIs, our proposed framework can enable comprehensive stratifications of TNBC patients and provide valuable information for therapeutic decision-making. It had the potential to be clinically implemented and promote the personalized management of TNBC.

3.
Adv Sci (Weinh) ; : e2306860, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38864559

RÉSUMÉ

Breast tumor-initiating cells (BTICs) of triple-negative breast cancer (TNBC) tissues actively repair DNA and are resistant to treatments including chemotherapy, radiotherapy, and targeted therapy. Herein, it is found that a previously reported secreted protein, sclerostin domain containing 1 (SOSTDC1), is abundantly expressed in BTICs of TNBC cells and positively correlated with a poor patient prognosis. SOSTDC1 knockdown impairs homologous recombination (HR) repair, BTIC maintenance, and sensitized bulk cells and BTICs to Olaparib. Mechanistically, following Olaparib treatment, SOSTDC1 translocates to the nucleus in an importin-α dependent manner. Nuclear SOSTDC1 interacts with the N-terminus of the nucleoprotein, chromatin helicase DNA-binding factor (CHD1), to promote HR repair and BTIC maintenance. Furthermore, nuclear SOSTDC1 bound to ß-transducin repeat-containing protein (ß-TrCP) binding motifs of CHD1 is found, thereby blocking the ß-TrCP-CHD1 interaction and inhibiting ß-TrCP-mediated CHD1 ubiquitination and degradation. Collectively, these findings identify a novel nuclear SOSTDC1 pathway in regulating HR repair and BTIC maintenance, providing insight into the TNBC therapeutic strategies.

4.
J Hematol Oncol ; 17(1): 37, 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38822399

RÉSUMÉ

Histone deacetylase (HDAC) serves as a critical molecular regulator in the pathobiology of various malignancies and have garnered attention as a viable target for therapeutic intervention. A variety of HDAC inhibitors (HDACis) have been developed to target HDACs. Many preclinical studies have conclusively demonstrated the antitumor effects of HDACis, whether used as monotherapy or in combination treatments. On this basis, researchers have conducted various clinical studies to evaluate the potential of selective and pan-HDACis in clinical settings. In our work, we extensively summarized and organized current clinical trials, providing a comprehensive overview of the current clinical advancements in targeting HDAC therapy. Furthermore, we engaged in discussions about several clinical trials that did not yield positive outcomes, analyzing the factors that led to their lack of anticipated therapeutic effectiveness. Apart from the experimental design factors, issues such as toxicological side effects, tumor heterogeneity, and unexpected off-target effects also contributed to these less-than-expected results. These challenges have naturally become significant barriers to the application of HDACis. Despite these challenges, we believe that advancements in HDACi research and improvements in combination therapies will pave the way or lead to a broad and hopeful future in the treatment of solid tumors.


Sujet(s)
Inhibiteurs de désacétylase d'histone , Histone deacetylases , Tumeurs , Humains , Tumeurs/traitement médicamenteux , Inhibiteurs de désacétylase d'histone/usage thérapeutique , Histone deacetylases/métabolisme , Animaux , Essais cliniques comme sujet , Antinéoplasiques/usage thérapeutique , Antinéoplasiques/pharmacologie , Thérapie moléculaire ciblée/méthodes
5.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189143, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38936517

RÉSUMÉ

Transposable elements (TEs), comprising nearly 50% of the human genome, have transitioned from being perceived as "genomic junk" to key players in cancer progression. Contemporary research links TE regulatory disruptions with cancer development, underscoring their therapeutic potential. Advances in long-read sequencing, computational analytics, single-cell sequencing, proteomics, and CRISPR-Cas9 technologies have enriched our understanding of TEs' clinical implications, notably their impact on genome architecture, gene regulation, and evolutionary processes. In cancer, TEs, including long interspersed element-1 (LINE-1), Alus, and long terminal repeat (LTR) elements, demonstrate altered patterns, influencing both tumorigenic and tumor-suppressive mechanisms. TE-derived nucleic acids and tumor antigens play critical roles in tumor immunity, bridging innate and adaptive responses. Given their central role in oncology, TE-targeted therapies, particularly through reverse transcriptase inhibitors and epigenetic modulators, represent a novel avenue in cancer treatment. Combining these TE-focused strategies with existing chemotherapy or immunotherapy regimens could enhance efficacy and offer a new dimension in cancer treatment. This review delves into recent TE detection advancements, explores their multifaceted roles in tumorigenesis and immune regulation, discusses emerging diagnostic and therapeutic approaches centered on TEs, and anticipates future directions in cancer research.

6.
Cancer Res ; 84(14): 2282-2296, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38657120

RÉSUMÉ

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. IL1 receptor type 2 (IL1R2) promotes breast tumor-initiating cell (BTIC) self-renewal and tumor growth in TNBC, indicating that targeting it could improve patient treatment. In this study, we observed that IL1R2 blockade strongly attenuated macrophage recruitment and the polarization of tumor-associated macrophages (TAM) to inhibit BTIC self-renewal and CD8+ T-cell exhaustion, which resulted in reduced tumor burden and prolonged survival in TNBC mouse models. IL1R2 activation by TAM-derived IL1ß increased PD-L1 expression by interacting with the transcription factor Yin Yang 1 (YY1) and inducing YY1 ubiquitination and proteasomal degradation in both TAMs and TNBC cells. Loss of YY1 alleviated the transcriptional repression of c-Fos, which is a transcriptional activator of PDL-1. Combined treatment with an IL1R2-neutralizing antibodies and anti-PD-1 led to enhanced antitumor efficacy and reduced TAMs, BTICs, and exhausted CD8+ T cells. These results suggest that IL1R2 blockade might be a strategy to potentiate immune checkpoint blockade efficacy in TNBC to improve patient outcomes. Significance: IL1R2 in both macrophages and breast cancer cells orchestrates an immunosuppressive tumor microenvironment by upregulating PD-L1 expression and can be targeted to enhance the efficacy of anti-PD-1 in triple-negative breast cancer.


Sujet(s)
Tumeurs du sein triple-négatives , Tumeurs du sein triple-négatives/immunologie , Tumeurs du sein triple-négatives/traitement médicamenteux , Tumeurs du sein triple-négatives/anatomopathologie , Tumeurs du sein triple-négatives/métabolisme , Animaux , Souris , Humains , Femelle , Inhibiteurs de points de contrôle immunitaires/pharmacologie , Inhibiteurs de points de contrôle immunitaires/usage thérapeutique , Lymphocytes T CD8+/immunologie , Microenvironnement tumoral/immunologie , Microenvironnement tumoral/effets des médicaments et des substances chimiques , Macrophages associés aux tumeurs/immunologie , Macrophages associés aux tumeurs/métabolisme , Macrophages associés aux tumeurs/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Récepteur-1 de mort cellulaire programmée/antagonistes et inhibiteurs , Antigène CD274/antagonistes et inhibiteurs , Antigène CD274/métabolisme , Facteur de transcription YY1/métabolisme , Facteur de transcription YY1/génétique , Tests d'activité antitumorale sur modèle de xénogreffe , Cellules souches tumorales/métabolisme , Cellules souches tumorales/immunologie , Cellules souches tumorales/anatomopathologie , Cellules souches tumorales/effets des médicaments et des substances chimiques
7.
Cancer Cell ; 42(4): 701-719.e12, 2024 Apr 08.
Article de Anglais | MEDLINE | ID: mdl-38593782

RÉSUMÉ

Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor fragments, and in vivo models. Through this comprehensive approach, we construct a network comprising co-alterations and mutually exclusive events and characterize their therapeutic potential and underlying biological basis. Notably, we identify associations between TP53mut-AURKAamp and endocrine therapy resistance, germline BRCA1mut-MYCamp and improved sensitivity to PARP inhibitors, and TP53mut-MYBamp and immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alterations hold promise to improve patient outcomes. Our study highlights the significance of genetic interactions in guiding genome-informed treatment decisions beyond single driver alterations.


Sujet(s)
Tumeurs du sein , Humains , Femelle , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/génétique , Tumeurs du sein/anatomopathologie , Génomique , Résultat thérapeutique , Phénotype , Mutation
8.
Med ; 5(4): 278-280, 2024 Apr 12.
Article de Anglais | MEDLINE | ID: mdl-38614071

RÉSUMÉ

Immunotherapy has enhanced breast cancer outcomes, but optimizing combination therapies is crucial. Integrating additional treatment modalities, like physical therapies, holds promise for optimizing efficacy. Pan et al. recently reported that combining preoperative immunotherapy with microwave ablation is safe and feasible in early-stage breast cancer, effectively sensitizing peripheral CD8+ T cells.1.


Sujet(s)
Lymphocytes T CD8+ , Tumeurs , Micro-ondes/usage thérapeutique , Anticorps monoclonaux humanisés/usage thérapeutique , Association thérapeutique
9.
Int J Biol Sci ; 20(6): 2130-2148, 2024.
Article de Anglais | MEDLINE | ID: mdl-38617541

RÉSUMÉ

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.


Sujet(s)
Tumeurs du sein triple-négatives , Humains , Tumeurs du sein triple-négatives/traitement médicamenteux , Tumeurs du sein triple-négatives/génétique , Lovastatine/pharmacologie , Lovastatine/usage thérapeutique , Protéines ribosomiques/génétique , Protéines nucléaires , Ribosomes/génétique , Protéines mitochondriales
10.
Brief Bioinform ; 25(3)2024 Mar 27.
Article de Anglais | MEDLINE | ID: mdl-38602320

RÉSUMÉ

Breast cancer is a highly heterogeneous disease with varied subtypes, prognoses and therapeutic responsiveness. Human leukocyte antigen class I (HLA-I) shapes the immunity and thereby influences the outcome of breast cancer. However, the implications of HLA-I variations in breast cancer remain poorly understood. In this study, we established a multiomics cohort of 1156 Chinese breast cancer patients for HLA-I investigation. We calculated four important HLA-I indicators in each individual, including HLA-I expression level, somatic HLA-I loss of heterozygosity (LOH), HLA-I evolutionary divergence (HED) and peptide-binding promiscuity (Pr). Then, we evaluated their distribution and prognostic significance in breast cancer subtypes. We found that the four breast cancer subtypes had distinct features of HLA-I indicators. Increased expression of HLA-I and LOH were enriched in triple-negative breast cancer (TNBC), while Pr was relatively higher in hot tumors within TNBCs. In particular, a higher Pr indicated a better prognosis in TNBCs by regulating the infiltration of immune cells and the expression of immune molecules. Using the matched genomic and transcriptomic data, we found that mismatch repair deficiency-related mutational signature and pathways were enriched in low-Pr TNBCs, suggesting that targeting mismatch repair deficiency for synthetic lethality might be promising therapy for these patients. In conclusion, we presented an overview of HLA-I indicators in breast cancer and provided hints for precision treatment for low-Pr TNBCs.


Sujet(s)
Tumeurs du cerveau , Tumeurs colorectales , Antigènes d'histocompatibilité de classe I , Syndromes néoplasiques héréditaires , Tumeurs du sein triple-négatives , Humains , Analyse de profil d'expression de gènes , Antigènes d'histocompatibilité de classe I/génétique , Mutation , Tumeurs du sein triple-négatives/métabolisme
11.
Cancer Cell Int ; 24(1): 131, 2024 Apr 09.
Article de Anglais | MEDLINE | ID: mdl-38594722

RÉSUMÉ

Extensive exploration of the molecular subtypes of triple-negative breast cancer (TNBC) is critical for advancing precision medicine. Notably, the luminal androgen receptor (LAR) subtype has attracted attention for targeted treatment combining androgen receptor antagonists and CDK4/6 inhibitors. Unfortunately, this strategy has proven to be of limited efficacy, highlighting the need for further optimization. Using our center's comprehensive multiomics dataset (n = 465), we identified novel therapeutic targets and evaluated their efficacy through multiple models, including in vitro LAR cell lines, in vivo cell-derived allograft models and ex vivo patient-derived organoids. Moreover, we conducted flow cytometry and RNA-seq analysis to unveil potential mechanisms underlying the regulation of tumor progression by these therapeutic strategies. LAR breast cancer cells exhibited sensitivity to chidamide and enzalutamide individually, with a drug combination assay revealing their synergistic effect. Crucially, this synergistic effect was verified through in vivo allograft models and patient-derived organoids. Furthermore, transcriptomic analysis demonstrated that the combination therapeutic strategy could inhibit tumor progression by regulating metabolism and autophagy. This study confirmed that the combination of histone deacetylase (HDAC) inhibitors and androgen receptor (AR) antagonists possessed greater therapeutic efficacy than monotherapy in LAR TNBC. This finding significantly bolsters the theoretical basis for the clinical translation of this combination therapy and provides an innovative strategy for the targeted treatment of LAR TNBC.

12.
Signal Transduct Target Ther ; 9(1): 59, 2024 Mar 11.
Article de Anglais | MEDLINE | ID: mdl-38462638

RÉSUMÉ

Diet, serving as a vital source of nutrients, exerts a profound influence on human health and disease progression. Recently, dietary interventions have emerged as promising adjunctive treatment strategies not only for cancer but also for neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and metabolic disorders. These interventions have demonstrated substantial potential in modulating metabolism, disease trajectory, and therapeutic responses. Metabolic reprogramming is a hallmark of malignant progression, and a deeper understanding of this phenomenon in tumors and its effects on immune regulation is a significant challenge that impedes cancer eradication. Dietary intake, as a key environmental factor, can influence tumor metabolism. Emerging evidence indicates that dietary interventions might affect the nutrient availability in tumors, thereby increasing the efficacy of cancer treatments. However, the intricate interplay between dietary interventions and the pathogenesis of cancer and other diseases is complex. Despite encouraging results, the mechanisms underlying diet-based therapeutic strategies remain largely unexplored, often resulting in underutilization in disease management. In this review, we aim to illuminate the potential effects of various dietary interventions, including calorie restriction, fasting-mimicking diet, ketogenic diet, protein restriction diet, high-salt diet, high-fat diet, and high-fiber diet, on cancer and the aforementioned diseases. We explore the multifaceted impacts of these dietary interventions, encompassing their immunomodulatory effects, other biological impacts, and underlying molecular mechanisms. This review offers valuable insights into the potential application of these dietary interventions as adjunctive therapies in disease management.


Sujet(s)
Régime cétogène , Tumeurs , Humains , Restriction calorique , Régime alimentaire , Jeûne , Tumeurs/thérapie
13.
Protein Cell ; 15(6): 419-440, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38437016

RÉSUMÉ

Tumor-resident microbiota in breast cancer promotes cancer initiation and malignant progression. However, targeting microbiota to improve the effects of breast cancer therapy has not been investigated in detail. Here, we evaluated the microbiota composition of breast tumors and found that enterotoxigenic Bacteroides fragilis (ETBF) was highly enriched in the tumors of patients who did not respond to taxane-based neoadjuvant chemotherapy. ETBF, albeit at low biomass, secreted the toxic protein BFT-1 to promote breast cancer cell stemness and chemoresistance. Mechanistic studies showed that BFT-1 directly bound to NOD1 and stabilized NOD1 protein. NOD1 was highly expressed on ALDH+ breast cancer stem cells (BCSCs) and cooperated with GAK to phosphorylate NUMB and promote its lysosomal degradation, thereby activating the NOTCH1-HEY1 signaling pathway to increase BCSCs. NOD1 inhibition and ETBF clearance increase the chemosensitivity of breast cancer by impairing BCSCs.


Sujet(s)
Bacteroides fragilis , Tumeurs du sein , Résistance aux médicaments antinéoplasiques , Cellules souches tumorales , Protéine adaptatrice de signalisation NOD1 , Humains , Protéine adaptatrice de signalisation NOD1/métabolisme , Protéine adaptatrice de signalisation NOD1/génétique , Tumeurs du sein/anatomopathologie , Tumeurs du sein/métabolisme , Tumeurs du sein/microbiologie , Tumeurs du sein/génétique , Femelle , Bacteroides fragilis/métabolisme , Bacteroides fragilis/génétique , Cellules souches tumorales/métabolisme , Cellules souches tumorales/anatomopathologie , Toxines bactériennes/métabolisme , Toxines bactériennes/génétique , Animaux , Souris , Lignée cellulaire tumorale , Metalloendopeptidases
14.
Nat Cancer ; 5(4): 673-690, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38347143

RÉSUMÉ

Molecular profiling guides precision treatment of breast cancer; however, Asian patients are underrepresented in publicly available large-scale studies. We established a comprehensive multiomics cohort of 773 Chinese patients with breast cancer and systematically analyzed their genomic, transcriptomic, proteomic, metabolomic, radiomic and digital pathology characteristics. Here we show that compared to breast cancers in white individuals, Asian individuals had more targetable AKT1 mutations. Integrated analysis revealed a higher proportion of HER2-enriched subtype and correspondingly more frequent ERBB2 amplification and higher HER2 protein abundance in the Chinese HR+HER2+ cohort, stressing anti-HER2 therapy for these individuals. Furthermore, comprehensive metabolomic and proteomic analyses revealed ferroptosis as a potential therapeutic target for basal-like tumors. The integration of clinical, transcriptomic, metabolomic, radiomic and pathological features allowed for efficient stratification of patients into groups with varying recurrence risks. Our study provides a public resource and new insights into the biology and ancestry specificity of breast cancer in the Asian population, offering potential for further precision treatment approaches.


Sujet(s)
Asiatiques , Tumeurs du sein , Récepteur ErbB-2 , Humains , Tumeurs du sein/génétique , Tumeurs du sein/thérapie , Femelle , Asiatiques/génétique , Récepteur ErbB-2/génétique , Mutation , Protéomique/méthodes , Analyse de profil d'expression de gènes/méthodes , Protéines proto-oncogènes c-akt/métabolisme , Protéines proto-oncogènes c-akt/génétique , Adulte d'âge moyen , Chine/épidémiologie , Ferroptose/génétique , Adulte , Métabolomique/méthodes , Transcriptome , Marqueurs biologiques tumoraux/génétique , Peuples d'Asie de l'Est
15.
Lancet Oncol ; 25(2): 184-197, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38211606

RÉSUMÉ

BACKGROUND: Triple-negative breast cancers display heterogeneity in molecular drivers and immune traits. We previously classified triple-negative breast cancers into four subtypes: luminal androgen receptor (LAR), immunomodulatory, basal-like immune-suppressed (BLIS), and mesenchymal-like (MES). Here, we aimed to evaluate the efficacy and safety of subtyping-based therapy in the first-line treatment of triple-negative breast cancer. METHODS: FUTURE-SUPER is an ongoing, open-label, randomised, controlled phase 2 trial being conducted at Fudan University Shanghai Cancer Center (FUSCC), Shanghai, China. Eligible participants were females aged 18-70 years, with an Eastern Cooperative Oncology Group performance status of 0-1, and histologically confirmed, untreated metastatic or recurrent triple-negative breast cancer. After categorising participants into five cohorts according to molecular subtype and genomic biomarkers, participants were randomly assigned (1:1) with a block size of 4, stratified by subtype, to receive, in 28-day cycles, nab-paclitaxel (100 mg/m2, intravenously on days 1, 8, and 15) alone (control group) or with a subtyping-based regimen (subtyping-based group): pyrotinib (400 mg orally daily) for the LAR-HER2mut subtype, everolimus (10 mg orally daily) for the LAR-PI3K/AKTmut and MES-PI3K/AKTmut subtypes, camrelizumab (200 mg intravenously on days 1 and 15) and famitinib (20 mg orally daily) for the immunomodulatory subtype, and bevacizumab (10 mg/kg intravenously on days 1 and 15) for the BLIS/MES-PI3K/AKTWT subtype. The primary endpoint was investigator-assessed progression-free survival for the pooled subtyping-based group versus the control group in the intention-to-treat population (all randomly assigned participants). Safety was analysed in all patients with safety records who received at least one dose of study drug. This study is registered with ClinicalTrials.gov (NCT04395989). FINDINGS: Between July 28, 2020, and Oct 16, 2022, 139 female participants were enrolled and randomly assigned to the subtyping-based group (n=69) or control group (n=70). At the data cutoff (May 31, 2023), the median follow-up was 22·5 months (IQR 15·2-29·0). Median progression-free survival was significantly longer in the pooled subtyping-based group (11·3 months [95% CI 8·6-15·2]) than in the control group (5·8 months [4·0-6·7]; hazard ratio 0·44 [95% CI 0·30-0·65]; p<0·0001). The most common grade 3-4 treatment-related adverse events were neutropenia (21 [30%] of 69 in the pooled subtyping-based group vs 16 [23%] of 70 in the control group), anaemia (five [7%] vs none), and increased alanine aminotransferase (four [6%] vs one [1%]). Treatment-related serious adverse events were reported for seven (10%) of 69 patients in the subtyping-based group and none in the control group. No treatment-related deaths were reported in either group. INTERPRETATION: These findings highlight the potential clinical benefits of using molecular subtype-based treatment optimisation in patients with triple-negative breast cancer, suggesting a path for further clinical investigation. Phase 3 randomised clinical trials assessing the efficacy of subtyping-based regimens are now underway. FUNDING: National Natural Science Foundation of China, Natural Science Foundation of Shanghai, Shanghai Hospital Development Center, and Jiangsu Hengrui Pharmaceuticals. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Sujet(s)
Tumeurs du sein triple-négatives , Humains , Femelle , Tumeurs du sein triple-négatives/traitement médicamenteux , Tumeurs du sein triple-négatives/anatomopathologie , Protéines proto-oncogènes c-akt , Phosphatidylinositol 3-kinases/usage thérapeutique , Récidive tumorale locale/traitement médicamenteux , Chine , Protocoles de polychimiothérapie antinéoplasique/effets indésirables
16.
Cell Res ; 34(1): 58-75, 2024 01.
Article de Anglais | MEDLINE | ID: mdl-38168642

RÉSUMÉ

Triple-negative breast cancer (TNBC) is an aggressive disease characterized by remarkable intratumor heterogeneity (ITH), which poses therapeutic challenges. However, the clinical relevance and key determinant of ITH in TNBC are poorly understood. Here, we comprehensively characterized ITH levels using multi-omics data across our center's cohort (n = 260), The Cancer Genome Atlas cohort (n = 134), and four immunotherapy-treated cohorts (n = 109). Our results revealed that high ITH was associated with poor patient survival and immunotherapy resistance. Importantly, we identified zinc finger protein 689 (ZNF689) deficiency as a crucial determinant of ITH formation. Mechanistically, the ZNF689-TRIM28 complex was found to directly bind to the promoter of long interspersed element-1 (LINE-1), inducing H3K9me3-mediated transcriptional silencing. ZNF689 deficiency reactivated LINE-1 retrotransposition to exacerbate genomic instability, which fostered ITH. Single-cell RNA sequencing, spatially resolved transcriptomics and flow cytometry analysis confirmed that ZNF689 deficiency-induced ITH inhibited antigen presentation and T-cell activation, conferring immunotherapy resistance. Pharmacological inhibition of LINE-1 significantly reduced ITH, enhanced antitumor immunity, and eventually sensitized ZNF689-deficient tumors to immunotherapy in vivo. Consistently, ZNF689 expression positively correlated with favorable prognosis and immunotherapy response in clinical samples. Altogether, our study uncovers a previously unrecognized mechanism underlying ZNF689 deficiency-induced ITH and suggests LINE-1 inhibition combined with immunotherapy as a novel treatment strategy for TNBC.


Sujet(s)
Tumeurs du sein triple-négatives , Humains , Immunothérapie , Tumeurs du sein triple-négatives/immunologie , Tumeurs du sein triple-négatives/anatomopathologie , Tumeurs du sein triple-négatives/thérapie , Facteurs de transcription/métabolisme , Protéines régulatrices de l'apoptose/métabolisme , Résistance aux médicaments antinéoplasiques/génétique
17.
World J Pediatr ; 2024 Jan 08.
Article de Anglais | MEDLINE | ID: mdl-38190010

RÉSUMÉ

BACKGROUND: Liver transplantation (LT) has been proposed as a viable treatment option for selected methylmalonic acidemia (MMA) patients. However, there are still controversies regarding the therapeutic value of LT for MMA. The systematic assessment of health-related quality of life (HRQoL)-targeted MMA children before and after LT is also undetermined. This study aimed to comprehensively assess the long-term impact of LT on MMA, including multiorgan sequelae and HRQoL in children and families. METHODS: We retrospectively evaluated 15 isolated MMA patients undergoing LT at our institution between June 2013 and March 2022. Pre- and post-transplant data were compared, including metabolic profiles, neurologic consequences, growth parameters, and HRQoL. To further assess the characteristics of the HRQoL outcomes in MMA, we compared the results with those of children with biliary atresia (BA). RESULTS: All patients had early onset MMA, and underwent LT at a mean age of 4.3 years. During 1.3-8.2 years of follow-up, the patient and graft survival rates were 100%. Metabolic stability was achieved in all patients with liberalized dietary protein intake. There was a significant overall improvement in height Z scores (P = 0.0047), and some preexisting neurological complications remained stable or even improved after LT. On the Pediatric Quality of Life Inventory (PedsQL™) generic core scales, the mean total, physical health, and psychosocial health scores improved significantly posttransplant (P < 0.05). In the family impact module, higher mean scores were noted for all subscales post-LT, especially family function and daily activities (P < 0.01). However, the total scores on the generic core scales and transplant module were significantly lower (Cohen's d = 0.57-1.17) when compared with BA recipients. In particular, social and school functioning (Cohen's d = 0.86-1.76), treatment anxiety, and communication (Cohen's d = 0.99-1.81) were far behind, with a large effect size. CONCLUSIONS: This large single-center study of the mainland of China showed an overall favorable impact of LT on isolated MMA in terms of long-term survival, metabolic control, and HRQoL in children and families. The potential for persistent neurocognitive impairment and inherent metabolic fragility requires long-term special care. Video Abstract (MP4 153780 KB).

18.
Sci Transl Med ; 16(728): eadg7740, 2024 01 03.
Article de Anglais | MEDLINE | ID: mdl-38170790

RÉSUMÉ

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with poor prognosis. TNBCs with high homologous recombination deficiency (HRD) scores benefit from DNA-damaging agents, including platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors, whereas those with low HRD scores still lack therapeutic options. Therefore, we sought to exploit metabolic alterations to induce HRD and sensitize DNA-damaging agents in TNBCs with low HRD scores. We systematically analyzed TNBC metabolomics and identified a metabolite, guanosine diphosphate (GDP)-mannose (GDP-M), that impeded homologous recombination repair (HRR). Mechanistically, the low expression of the upstream enzyme GDP-mannose-pyrophosphorylase-A (GMPPA) led to the endogenous up-regulation of GDP-M in TNBC. The accumulation of GDP-M in tumor cells further reduced the interaction between breast cancer susceptibility gene 2 (BRCA2) and ubiquitin-specific peptidase 21 (USP21), which promoted the ubiquitin-mediated degradation of BRCA2 to inhibit HRR. Therapeutically, we illustrated that the supplementation of GDP-M sensitized DNA-damaging agents to impair tumor growth in both in vitro (cancer cell line and patient-derived organoid) and in vivo (xenograft in immunodeficient mouse) models. Moreover, the combination of GDP-M with DNA-damaging agents activated STING-dependent antitumor immunity in immunocompetent syngeneic mouse models. Therefore, GDP-M supplementation combined with PARP inhibition augmented the efficacy of anti-PD-1 antibodies. Together, these findings suggest that GDP-M is a crucial HRD-related metabolite and propose a promising therapeutic strategy for TNBCs with low HRD scores using the combination of GDP-M, PARP inhibitors, and anti-PD-1 immunotherapy.


Sujet(s)
Tumeurs du sein triple-négatives , Animaux , Souris , Humains , Tumeurs du sein triple-négatives/traitement médicamenteux , Réparation de l'ADN par recombinaison , Mannose/usage thérapeutique , Inhibiteurs de poly(ADP-ribose) polymérases/pharmacologie , Inhibiteurs de poly(ADP-ribose) polymérases/usage thérapeutique , Recombinaison homologue , Guanosine diphosphate mannose , Protéine BRCA1/génétique , ADN , Ubiquitin thiolesterase/métabolisme
19.
Nat Chem ; 16(1): 122-131, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37710046

RÉSUMÉ

Biomarker discovery is essential for the understanding, diagnosis, targeted therapy and prognosis assessment of malignant diseases. However, it remains a huge challenge due to the lack of sensitive methods to identify disease-specific rare molecules. Here we present MORAC, molecular recognition based on affinity and catalysis, which enables the effective identification of candidate biomarkers with low abundance. MORAC relies on a class of DNAzymes, each cleaving a sole RNA linkage embedded in their DNA chain upon specifically sensing a complex system with no prior knowledge of the system's molecular content. We show that signal amplification from catalysis ensures the DNAzymes high sensitivity (for target probing); meanwhile, a simple RNA-to-DNA mutation can shut down their RNA cleavage ability and turn them into a pure affinity tool (for target pulldown). Using MORAC, we identify previously unknown, low-abundance candidate biomarkers with clear clinical value, including apolipoprotein L6 in breast cancer and seryl-tRNA synthetase 1 in polyps preceding colon cancer.


Sujet(s)
Techniques de biocapteur , ADN catalytique , ADN catalytique/génétique , ADN , ARN , Marqueurs biologiques
20.
Cell Discov ; 9(1): 125, 2023 Dec 19.
Article de Anglais | MEDLINE | ID: mdl-38114467

RÉSUMÉ

Germline-somatic mutation interactions are universal and associated with tumorigenesis, but their role in breast cancer, especially in non-Caucasians, remains poorly characterized. We performed large-scale prospective targeted sequencing of matched tumor-blood samples from 4079 Chinese females, coupled with detailed clinical annotation, to map interactions between germline and somatic alterations. We discovered 368 pathogenic germline variants and identified 5 breast cancer DNA repair-associated genes (BCDGs; BRCA1/BRCA2/CHEK2/PALB2/TP53). BCDG mutation carriers, especially those with two-hit inactivation, demonstrated younger onset, higher tumor mutation burden, and greater clinical benefits from platinum drugs, PARP inhibitors, and immune checkpoint inhibitors. Furthermore, we leveraged a multiomics cohort to reveal that clinical benefits derived from two-hit events are associated with increased genome instability and an immune-activated tumor microenvironment. We also established an ethnicity-specific tool to predict BCDG mutation and two-hit status for genetic evaluation and therapeutic decisions. Overall, this study leveraged the large sequencing cohort of Chinese breast cancers, optimizing genomics-guided selection of DNA damaging-targeted therapy and immunotherapy within a broader population.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE