Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 105
Filtrer
1.
Chem Sci ; 15(23): 8913-8921, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38873050

RÉSUMÉ

The construction and application of metal-organic cages with accessible internal cavities have witnessed rapid development, however, the precise synthesis of complex metal-organic capsules with multiple cavities and achievement of multi-guest encapsulation, and further in-depth comprehension of host-multi-guest recognition remain a great challenge. Just like building LEGO blocks, herein, we have constructed a series of high-order layered metal-organic architectures of generation n (n = 1/2/3/4 is also the number of cavities) by multi-component coordination-driven self-assembly using porphyrin-containing tetrapodal ligands (like plates), multiple parallel-podal ligands (like clamps) and metal ions (like nodes). Importantly, these high-order assembled structures possessed different numbers of rigid and separate cavities formed by overlapped porphyrin planes with specific gaps. The host-guest experiments and convincing characterization proved that these capsules G2-G4 could serve as host structures to achieve multi-guest recognition and unprecedentedly encapsulate up to four C60 molecules. More interestingly, these capsules revealed negative cooperation behavior in the process of multi-guest recognition, which provides a new platform to further study complicated host-multi-guest interaction in the field of supramolecular chemistry.

2.
J Am Chem Soc ; 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38838168

RÉSUMÉ

Molecular self-assembly is a widely recognized approach for fabricating biomimetic functional nanostructures. Here, we report the synthesis of two giant hollow coronoid-like supramolecular hexagons, H1 and H2. These hexagons feature large cavities, showcasing unique inner and outer hexagons fixed by specific connectivities for enhanced stability and high metal center density. H1 exhibits properties that can be transformed through the thermodynamic conversion of the metallopolymer formed by L1 and L2. With an edge length of 6.8 nm, H2 is one of the largest hexagons reported to date. 1D and 2D NMR, TEM, ESI-MS, and TWIM-MS experiments provided conclusive evidence for the composition and structure of the assembled hexagons. This work demonstrates the feasibility of constructing giant supramolecular architectures with precise control over their size and shape, opening up new possibilities for the design and synthesis of sophisticated supramolecules and nonbiological materials.

3.
Inorg Chem ; 63(16): 7442-7454, 2024 Apr 22.
Article de Anglais | MEDLINE | ID: mdl-38606439

RÉSUMÉ

As electrocatalysts, molecular catalysts with large aromatic systems (such as terpyridine, porphyrin, or phthalocyanine) have been widely applied in the CO2 reduction reaction (CO2RR). However, these monomeric catalysts tend to aggregate due to strong π-π interactions, resulting in limited accessibility of the active site. In light of these challenges, we present a novel strategy of active site isolation for enhancing the CO2RR. Six Ru(Tpy)2 were integrated into the skeleton of a metallo-organic supramolecule by stepwise self-assembly in order to form a rhombus-fused six-pointed star R1 with active site isolation. The turnover frequency (TOF) of R1 was as high as 10.73 s-1 at -0.6 V versus reversible hydrogen electrode (vs RHE), which is the best reported value so far at the same potential to our knowledge. Furthermore, by increasing the connector density on R1's skeleton, a more stable triangle-fused six-pointed star T1 was successfully synthesized. T1 exhibits exceptional stability up to 126 h at -0.4 V vs RHE and excellent TOF values of CO. The strategy of active site isolation and connector density increment significantly enhanced the catalytic activity by increasing the exposure of the active site. This work provides a starting point for the design of molecular catalysts and facilitates the development of a new generation of catalysts with a high catalytic performance.

4.
Phys Chem Chem Phys ; 26(18): 13915-13922, 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38666431

RÉSUMÉ

We design a multifunctional THz polarization modulation meta-mirror integrated with polarization conversion and dichroism functions switched by temperature and voltage. The meta-mirror is composed of two-layered graphene metasurfaces and a layer of vanadium dioxide (VO2) on a gold film substrate. Linear-to-linear polarization conversion and linear dichroism (LD) can be switched by temperature control in the VO2 film and Fermi level adjustments in the graphene metasurfaces, where the polarization conversion ratio (PCR) is higher than 0.9 in the range of 2.89 THz to 4.02 THz, LD value reached a maximum of 0.6 at 3.84 THz, and linear-to-circular polarization conversion and circular dichroism (CD) can also be tuned with ellipticity higher than 0.9 in the range of 2.32 THz to 2.69 THz and CD value as high as 0.71 at 2.45 THz. The proposed meta-mirror is the first THz metamaterial device integrating four switchable functions, including linear-to-linear polarization conversion, linear-to-circular polarization conversion, linear dichroism and circular dichroism. The meta-mirror is a promising design for compact system integration in THz imaging, sensing and biological detection applications.

5.
Inorg Chem ; 63(9): 4152-4159, 2024 Mar 04.
Article de Anglais | MEDLINE | ID: mdl-38372260

RÉSUMÉ

The template-directed strategy has been extensively employed for the construction of supramolecular architectures. However, with the increase in the size and complexity of these structures, the synthesis difficulty of the templates escalates exponentially, thereby impeding the widespread application of this strategy. In this study, two truncated triangles T1 and T2 were successfully self-assembled through a novel segmented template strategy by segmenting the core triangular template into portions. Two metallo-organic ligands L2 and L3 were designed and synthesized by dividing the central stable triangle into three separate parts and incorporating them into the precursor ligands, which served as templates to guide the self-assembly process with ligands L1 and L4, respectively. The assembled structures were unambiguously characterized by multidimensional and multinuclear NMR (1H, COSY, NOESY), multidimensional mass spectrometry analysis (ESI-MS and TWIM-MS), and transmission electron microscopy (TEM). Moreover, we observed the formation of fiberlike nanotubes from single-molecule triangles by hierarchical self-assembly.

6.
Angew Chem Int Ed Engl ; 63(4): e202317674, 2024 Jan 22.
Article de Anglais | MEDLINE | ID: mdl-38055187

RÉSUMÉ

Coordinative supramolecular cages with adjustable cavities have found extensive applications in various fields, but the cavity modification strategies for multi-functional structures are still challenging. Here, we present a tension-driven self-expansion strategy for construction of multi-cavity cages with high structural complexity. Under the regulation of strain-induced capping ligands, unprecedented heteromorphosis triple-cavity cages S2 /S4 were obtained based on a metallo-organic ligand (MOL) scaffold. The heteromorphosis cages exhibited significant higher cavity diversity than the homomorphous double-cavity cages S1 /S3 ; all of the cages were thoroughly characterized through various analytical techniques including (1D and 2D) NMR, ESI-MS, TWIM-MS, AFM, and SAXS analyses. Furthermore, the encapsulation of porphyrin in the cavities of these multi-cavity cages were investigated. This research opens up new possibilities for the architecture of heteromorphosis supramolecular cages via precisely controlled "scaffold-capping" assembly with preorganized ligands, which could have potential applications in the development of multifunctional structures with higher complexity.

7.
Front Med (Lausanne) ; 10: 1240253, 2023.
Article de Anglais | MEDLINE | ID: mdl-38131042

RÉSUMÉ

Objectives: This study aims to explore the relationship between the severity of asthma and neutrophils and related oxidative stress-associated molecules in peripheral blood and induced sputum. Methods: A total of 67 subjects were included in this study, namely, 25 patients with severe asthma and 42 patients with non-severe asthma. Clinical data, induced sputum and peripheral blood were collected. Lung function and molecules related to oxidative stress in induced sputum and peripheral blood of asthma patients were detected. The relationship between neutrophils and asthma severity was analyzed. HDAC2 mRNA and protein expression levels and HDAC2 activity were also analyzed. Multivariate logistic regression was performed to select statistically significant variables. Results: The absolute value of neutrophils and percentage of neutrophils were higher in the severe asthma patients. These two values were used to predict the severity of asthma by ROC analysis, with the best cutoff values being 4.55 × 109/L (sensitivity 83.3%, specificity 64.0%) and 55.15% (sensitivity 54.8%, specificity 88.0%). The ROS concentration of neutrophils in the induced sputum samples and the 8-iso-PGF2α concentration in the peripheral blood samples were higher in the severe asthma group (P = 0.012; P = 0.044), whereas there was reduced HDAC2 protein activity in PBMCs (P < 0.001). A logistic equation and a nomogram were created to give a precise prediction of disease severity. Conclusion: Oxidative stress is increased in severe asthma patients. Peripheral blood neutrophils and 8-iso-PGF2α can be used as biomarkers to predict the severity of asthma. A prediction model was created for evaluating asthma severity.

8.
J Med Case Rep ; 17(1): 536, 2023 Dec 30.
Article de Anglais | MEDLINE | ID: mdl-38158564

RÉSUMÉ

BACKGROUND: Considering that right paraduodenal hernia is a rare internal hernia with abnormal anatomy and is often encountered during an emergency, surgeons may lack knowledge about it and choose incorrect treatment. Thus, this case report is a helpful complement to the few previously reported cases of right paraduodenal hernia. Additionally, we reviewed all the reported right paraduodenal hernia cases and proposed appropriate surgical strategies according to different anatomical features. CASE PRESENTATION: The case involved a 33-year-old Chinese male patient who was admitted to the hospital due to abdominal pain. The patient was initially diagnosed with small bowel obstruction, and conservative treatment failed. An emergency operation was arranged, during which a diagnosis of right paraduodenal hernia was made instead. After surgery, the patient recovered well without abdominal pain for 2 years. CONCLUSION: Although right paraduodenal hernia accounts only for a small proportion of paraduodenal hernia, its anatomical characteristics can vary considerably. We divided right paraduodenal hernia into three types, with each type requiring a different surgical strategy.


Sujet(s)
Maladies du duodénum , Hernie abdominale , Mâle , Humains , Adulte , Hernie paraduodénale/complications , Hernie paraduodénale/chirurgie , Hernie abdominale/imagerie diagnostique , Hernie abdominale/chirurgie , Hernie abdominale/complications , Intestin grêle/chirurgie , Herniorraphie/effets indésirables , Douleur abdominale/étiologie , Maladies du duodénum/imagerie diagnostique , Maladies du duodénum/chirurgie
9.
Cancer Immunol Immunother ; 72(12): 4179-4194, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37831145

RÉSUMÉ

CD47 is highly expressed in many tumor tissues and induces immune evasion by interaction with SIRP-alpha (signal regulatory protein-alpha) expressed on tumor-associated macrophages. In this study, we identified a novel CD47-blocking peptide VK17 by phage display technique. A pro-apoptotic VK30 peptide was obtained after VK17 was fused to KLA amino acid repeat at C-termini. The VK30 was specifically bound to CD47 on lung cancer cells, and subsequently inducing lung cancer cell apoptosis. Meanwhile, the expression of Bax was increased, whereas the expression of Bcl-2 and Ki-67 were reduced in the VK30-treated lung cancer cells. In addition, VK30 effectively improved the phagocytic activity of macrophages against VK30-pretreated lung cancer cells. Combinational treatment of lung cancer cells with blocking antibody anti-CD47 and VK30 additively enhanced VK30 binding to CD47, subsequently increasing lung cancer cell apoptosis and macrophage phagocytosis. Intraperitoneal administration of 2 mg/kg VK30 induced effective trafficking of VK30 into tumor tissues, and suppressing lung cancer cell growth in mice, associated with increased tumor cell apoptosis, macrophage activation and phagocytosis in vivo. The expression of CD47 was reduced in the VK30-treated tumor tissues and the expression level was positively correlated to tumor size. In addition, VK30 reduced the infiltration of CD11b+Ly6G+ neutrophils and CD11b+Ly6C+Ly6G+ granulocytic myeloid-derived suppressor cells (Gr-MDSCs) in tumor tissues, associated with suppressed expression of tumorigenic IL-6 and TNF-alpha from these cell types. Thereby, VK30 exerted anti-tumor effects in mice through inducing tumor cell apoptosis and macrophage phagocytosis. VK30 would be a novel therapeutic peptide in lung cancer immunotherapy.


Sujet(s)
Tumeurs du poumon , Souris , Animaux , Tumeurs du poumon/anatomopathologie , Antigènes CD47 , Phagocytose , Macrophages , Peptides/métabolisme
10.
Biomed Opt Express ; 14(10): 5199-5207, 2023 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-37854577

RÉSUMÉ

In this work, we design multi-parameter phase imaging flow cytometry based on dual-view transport of intensity (MPFC), which integrates phase imaging and microfluidics to a microscope, to obtain single-shot quantitative phase imaging on cells flowing in the microfluidic channel. The MPFC system has been proven with simple configuration, accurate phase retrieval, high imaging contrast, and real-time imaging and has been successfully employed not only in imaging, recognizing, and analyzing the flowing cells even with high-flowing velocities but also in tracking cell motilities, including rotation and binary rotation. Current results suggest that our proposed MPFC provides an effective tool for imaging and analyzing cells in microfluidics and can be potentially used in both fundamental and clinical studies.

11.
Biochem Biophys Res Commun ; 682: 386-396, 2023 11 19.
Article de Anglais | MEDLINE | ID: mdl-37844448

RÉSUMÉ

Signal regulatory protein-alpha (SIRPα) and IL-6 participate in the induction of tumor immune suppressive environment and facilitate tumor growth. In this study, we found that SIRPα was significantly elevated in macrophages of non-small cell lung cancer (NSCLC) tissues, which was positively correlated to the expression of CD163, PD-1, IL-6, and lung cancer progression. SIRPα in peripheral blood mononuclear cells (PBMCs) of NSCLC patients was also associated with CD163, PD-1, and plasma IL-6. Blockade of SIRPα signaling in SIRPα ± and SIRPα-/- mice attenuated lung cancer growth and reduced IL-6 expression in LLC cells-transplanted murine lung cancer model. Co-targeting SIRPα and IL-6 additively suppressed the expression of IL-6 and activation of STAT3, accompanied with a reduced population of pro-tumorigenic CD206+ M2 subtype of macrophages, PD-1+ tumor-associated macrophages (TAMs), and PD-1+CD8+ T cells in tumor tissues of anti-IL-6 antibody (aIL-6)-treated mice deficient in SIRPα. Further in vitro studies showed that blockade of SIRPα signaling by anti-SIRPα effectively improved phagocytosis of human PBMCs. IL-6 treatment improved polarization of M2 subtypes and the expression of PD-1 in bone marrow-derived macrophages (BMDMs); whereas both aIL-6 and STAT3 inhibitor C188-9 suppressed the expression of PD-1 and SIRPα in BMDMs. M2 cell-biased polarization was also reduced in aIL-6 or C188-9 treated BMDMs. Thereby, SIRPα and IL-6 form a positive feedback loop and regulate each other through STAT3 signaling in macrophages. The increased SIRPα/IL-6 axis may promote immune suppressive environment and lung cancer growth, which may be a potential target for clinical treatment.


Sujet(s)
Carcinome pulmonaire non à petites cellules , Tumeurs du poumon , Animaux , Humains , Souris , Carcinome pulmonaire non à petites cellules/anatomopathologie , Lymphocytes T CD8+/métabolisme , Interleukine-6/métabolisme , Agranulocytes/métabolisme , Tumeurs du poumon/anatomopathologie , Macrophages/métabolisme , Récepteur-1 de mort cellulaire programmée/métabolisme
12.
Appl Opt ; 62(24): 6343-6349, 2023 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-37706824

RÉSUMÉ

To improve the performance of binary diffuser-based coherent modulation imaging (CMI), a double-channel optical alignment was proposed. Two diffraction patterns formed by the reflection and transmission of a binary diffuser were simultaneously captured and adopted for iterative reconstruction in combination. The information involved in reflected light, not considered in the traditional single-channel optical alignment, was also reconstructed in this dual-channel binary diffuser-based coherent modulation imaging (DB-CMI). The reconstruction quality and speed were improved and verified by both numerical simulations and proof-of-principle experiments. Therefore, DB-CMI improves traditional CMI and provides a powerful tool for quantitative phase imaging.

13.
Inorg Chem ; 62(29): 11500-11509, 2023 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-37436175

RÉSUMÉ

Supramolecular architectures with multiple emissive units are especially appealing due to their desired properties, such as artificial light harvesting and white-light emission. But fully achieving multi-wavelength photoluminescence in a single supramolecular architecture remains a challenge. In this paper, functionalized supramolecular architectures containing twelve metal centers and six pyrene moieties were nearly quantitatively synthesized by multi-component self-assembly and fully characterized by 1D and 2D nuclear magnetic resonance, dynamic light scattering, electrospray ionization mass spectrometry, traveling-wave ion mobility mass spectrometry, and transmission electron microscopy. Moreover, the hierarchical nano-assemblies were prepared by introducing anionic dyes to the positively charged self-assembled framework, which contained three luminescence centers, namely, pyrene, tpy-Cd coordination parts, and Sulforhodamine B anions. Such a hierarchically assembled system displayed tunable emission by taking full advantage of aggregation-induced emission enhancement, aggregation-caused quenching, and fluorescence resonance energy transfer effects and showed the diverse emission colors. This research provides a new insight for constructing multiple emissive metallo-supramolecular assemblies.

14.
Appl Opt ; 62(8): 1886-1894, 2023 Mar 10.
Article de Anglais | MEDLINE | ID: mdl-37133070

RÉSUMÉ

Whole slide imaging scans a microscope slide into a high-resolution digital image, and it paves the way from pathology to digital diagnostics. However, most of them rely on bright-field and fluorescence imaging with sample labels. In this work, we designed sPhaseStation, which is a dual-view transport of intensity phase microscopy-based whole slide quantitative phase imaging system for label-free samples. sPhaseStation relies on a compact microscopic system with two imaging recorders that can capture both under and over-focus images. Combined with the field of view (FoV) scan, a series of these defocus images in different FoVs can be captured and stitched into two FoV-extended under and over-focus ones, which are used for phase retrieval via solving the transport of intensity equation. Using a 10× micro-objective, sPhaseStation reaches the spatial resolution of 2.19 µm and obtains the phase with high accuracy. Additionally, it acquires a whole slide image of a 3m m×3m m region in 2 min. The reported sPhaseStation could be a prototype of the whole slide quantitative phase imaging device, which may provide a new perspective for digital pathology.

15.
Inorg Chem ; 62(23): 8923-8930, 2023 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-37246851

RÉSUMÉ

As a result of their optical and redox properties, bipyridyl (bpy) and terpyridyl (tpy) ruthenium complexes play vital roles in numerous domains. Herein, the design and synthesis of two bipyridyl and terpyridyl ruthenium(II) building units L1 and L2 are explained. A [Ru(bpy)3]2+ functionalized triangle S1 and a Sierpinski triangle S2 were synthesized in almost quantitative yields by the self-assembly of L1 with Zn2+ ions and by the heteroleptic self-assembly of L1 and L2 with Zn2+ ions, respectively. The Sierpinski triangle S2 contains the coordination metals [Ru(bpy)3]2+, [Ru(tpy)2]2+, and [Zn(tpy)2]2+. According to research on the catalytic activity of amine oxidation on supramolecules S1 and S2, the benzylamine substrates were nearly entirely transformed to N-benzylidenebenzylamine derivatives after 1 h under a Xe lamp. Furthermore, the observed ruthenium-containing terpyridyl supramolecule S2 maintains high luminous performance at ambient temperature. This discovery opens up new possibilities for the rational molecular design of terpyridyl ruthenium fluorescent materials and catalytic functional materials.

16.
Dalton Trans ; 52(21): 7071-7078, 2023 May 30.
Article de Anglais | MEDLINE | ID: mdl-37161840

RÉSUMÉ

In the field of metallo-supramolecular assemblies, supramolecular macrocycles have attracted considerable attention due to their guest recognition and catalytic properties. Herein, we report a novel strategy for the construction of giant hollow macrocyclic structures using a bi-directional geometric constraint strategy. We investigated the structural design of two terpyridine-based tetratopic organic ligands, whose inner and outer rims have different angles. Compared to conventional strategies of self-assembly using single angular orientation building blocks that typically generate small macrocyclic objects or polymers, the mutual interaction between the different angles of the ligands could promote the formation of giant hollow macrocyclic supramolecular architectures. The self-assembly mechanism and hierarchical self-assembly of giant supramolecular macrocycles have been characterized by NMR, ESI-MS and TEM experiments. The strategy used in this study not only advances the design of giant 2D macrocycles with large inner diameters but also gives insights into the mechanism of formation of large structures.

17.
Langmuir ; 39(21): 7337-7344, 2023 May 30.
Article de Anglais | MEDLINE | ID: mdl-37194972

RÉSUMÉ

In recent years, radioactive iodine capture has played an important role in nuclear waste treatment. However, most of the adsorbents possess low economic efficiency and undesirable reutilization in practical application. In this work, a terpyridine-based porous metallo-organic cage was assembled for iodine adsorption. Through synchrotron X-ray analysis, the metallo-cage was found to have a porous hierarchical packing mode with inherent cavity and packing channel. By taking advantage of polycyclic aromatic units and charged ⟨tpy-Zn2+-tpy⟩ (tpy = terpyridine) coordination sites in the structure, this nanocage exhibits an excellent ability to capture iodine in both the gas phase and aqueous medium, and the crystal state of the nanocage shows an ultrafast kinetic process of capturing I2 in aqueous solution within 5 min. The calculated maximum sorption capacities for I2 based on the Langmuir isotherm models are 1731 and 1487 mg g-1 for amorphous and crystalline nanocages, which is noticeably higher than most of the reported iodine sorbent materials in the aqueous phase. This work not only provides a rare example of iodine adsorption by a terpyridyl-based porous cage but also expands the applications of terpyridine coordination systems into iodine capture.

18.
Archaeol Anthropol Sci ; 15(5): 71, 2023.
Article de Anglais | MEDLINE | ID: mdl-37159718

RÉSUMÉ

Dian Basin in Yunnan province is an important center for both early agricultural production and centralized state formation. Settled agricultural villages are present in the province since at least the third millennium BC, and by the first millennium BC, the Dian Culture, a highly specialized bronze polity, flourished in the Dian Basin and surrounding area, until it was conquered by the Han in 109 BC. The increased deployment of flotation at recent archaeological excavations in Yunnan allowed the reconstruction of agricultural practices from the Neolithic to the early Bronze Age, documented at Baiyangcun, Haimenkou, and Xueshan among others. However, archaeobotanical evidence relating to the pivotal period right before and after the Han conquest have so far been lacking, with only limited written records about agricultural production in the Shiji by Sima Qian. Here we present for the first time direct archaeobotanical evidence relating to this transitional period as revealed by rich Han period deposits found during the 2016 excavation of Hebosuo, the largest Dian settlement investigated in Yunnan so far, dated by direct AMS on charred cereal grains and artefactual evidence as spanning from between 850 BC-220 AD. Following the Han conquest, the main components of the agricultural system did not undergo radical changes, but the weedy flora indicates a heavier reliance of wet-land rice systems, evidencing a higher level of water management or even irrigation practices, and the consequent intensification of the agricultural production. These findings on shifting agricultural regimes in Yunnan also contribute to current debates about the interplay between intensification, food risk, and ecology in times of political instability. Supplementary Information: The online version contains supplementary material available at 10.1007/s12520-023-01766-9.

19.
J Biophotonics ; 16(7): e202300057, 2023 07.
Article de Anglais | MEDLINE | ID: mdl-37039822

RÉSUMÉ

Label-free imaging and identification of fast-moving cells is a very challenging task. A kind of phase flow cytometry using coherent modulation imaging was proposed to realize label-free imaging and identification on fast-moving cells with compact optical alignment and high accuracy. Phase image of cells under inspection could be computed qualitatively from their diffraction patterns at the accuracy of about 0.01 wavelength and the resolution of about 1.23 µm and the view field of 0.126 mm2 . Since the imaging system was mainly composed by a piece of random phase plate a detector without using commonly adopted reference beam and corresponding complex optical alignment, this method has much compacter optical structure and much higher tolerance capability to environmental instability in comparison with other kinds of phase flow cytometry. Current experimental results prove it could be an efficient optical tool for label-free tumor cell detection.


Sujet(s)
Microscopie , Cytométrie en flux , Microscopie/méthodes
20.
Dalton Trans ; 52(10): 3033-3039, 2023 Mar 07.
Article de Anglais | MEDLINE | ID: mdl-36779408

RÉSUMÉ

A series of complexes L22-M (L2: 6,6″-bis(4-methoxyphenyl)-4'-phenyl-2,2':6',2″-terpyridine, M: Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+) were synthesized by coordinating p-methoxyphenyl 6,6″-substituted terpyridine ligand with first-row transition metal ions and characterized by NMR, ESI-MS, and X-ray single crystal diffraction techniques. Single-crystal structures demonstrated that the steric hindrance of p-methoxyphenyl substituents endowed complexes L22-M with obvious longer coordination bond lengths and larger bond angles and dihedral angles compared with unmodified L12-M (L1: 4'-phenyl-2,2':6',2″-terpyridine). The chiral helix geometry was observed for L22-M, in which 2,2':6',2″-terpyridine moiety dramatically twisted to a spiral form in comparison to the nearly coplanar structure of the parent L12-M, resulting in plentiful intramolecular and intermolecular π-π interactions. Also, the appealing racemic (P and M) double helix packed structure for 6,6″-modified bisterpyridine complex L22-Cu was formed in the crystal. The consequent appealing charge transfer (CT) emission for L22-Zn in the solution and solid were investigated via UV-vis and fluorescence spectroscopy techniques and time-dependent density functional theory (TD-DFT) calculations. This work afforded a new method to achieve intriguing chiral geometry and CT optical properties via the subtle design and modification of terpyridine ligands.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...